[1] |
MCCOMBIE W R, MCPHERSON J D. Future Promises and Concerns of Ubiquitous Next-generation Sequencing[J]. Cold Spring Harbor Perspectives in Medicine, 2019,9(9):a025783.
doi: 10.1101/cshperspect.a025783
pmid: 30478095
|
[2] |
MALIN B A. An Evaluation of the Current State of Genomic Data Privacy Protection Technology and a Roadmap for the Future[J]. Journal of the American Medical Informatics Association, 2005,12(1):28-34.
doi: 10.1197/jamia.M1603
pmid: 15492030
|
[3] |
GYMREK M, MCGUIRE A L, GOLAN D, et al. Identifying Personal Genomes by Surname Inference[J]. Science, 2013,339(6117):321-324.
pmid: 23329047
|
[4] |
KIM M, LAUTER K. Private Genome Analysis through Homomorphic Encryption[J]. BMC Medical Informatics and Decision Making, 2015,15(5):S3.
|
[5] |
韩鹍, 张海林, 辛丹, 等. 利用身份的全同态加密函数库设计方法[J]. 西安电子科技大学学报, 2017,44(4):56-61.
|
|
HAN Kun, ZHANG Hailin, XIN Dan, et al. Design Method of an Identity-based Fully Homomorphic Encryption Library[J]. Journal of Xidian University, 2017,44(4):56-61.
|
[6] |
JAGADEESH K A, WU D J, BIRGMEIER J A, et al. Deriving Genomic Diagnoses without Revealing Patient Genomes[J]. Science, 2017,357(6352):692-695.
doi: 10.1126/science.aam9710
pmid: 28818945
|
[7] |
BALDI P, BARONIO R, DE CRISTOFARO E, et al. Countering GATTACA: Efficient and Secure Testing of Fully-sequenced Human Genomes[C]// Proceedings of the 2011 ACM Conference on Computer and Communications Security. New York: ACM, 2011: 691-702.
|
[8] |
SHEN L, CHEN X, WANG D, et al. Efficient and Private Set Intersection of Human Genomes[C]// Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2018: 761-764.
|
[9] |
PINKAS B, SCHNEIDER T, ZOHNER M. Scalable Private Set Intersection Based on OT Extension[J]. ACM Transactions on Privacy and Security, 2018,21(2):7.
|
[10] |
BØRSTING C, SANCHEZ J J, HANSEN H E, et al. Performance of the SNPforID 52 SNP-plex Assay in Paternity Testing[J]. Forensic Science International: Genetics, 2008,2(4):292-300.
doi: 10.1016/j.fsigen.2008.03.007
|
[11] |
ISHAI Y, KILIAN J, NISSIM K, et al. Extending Oblivious Transfers Efficiently[C]// Lecture Notes in Computer Science: 2729. Heidelberg: Springer Verlag, 2003: 145-161.
|
[12] |
NIELSEN J B, NORDHOLT P S, ORLANDI C, et al. A New Approach to Practical Active-secure Two-party Computation[C]// Lecture Notes in Computer Science: 7417. Heidelberg: Springer Verlag, 2012: 681-700.
|
[13] |
ASHAROV G, LINDELL Y, SCHNEIDER T, et al. More Efficient Oblivious Transfer and Extensions for Faster Secure Computation[C]// Proceedings of the 2013 ACM Conference on Computer and Communications Security. New York: ACM, 2013: 535-548.
|
[14] |
KISS S Z, HOSSZU E, TAPOLCAI J, et al. Bloom Filter with a False Positive Free Zone[C]// Proceedings of the 2018 IEEE Conference on Computer Communications. Piscataway: IEEE, 2018: 1412-1420.
|
[15] |
PINKAS B, SCHNEIDER T, ZOHNER M. Faster Private Set Intersection Based on OT Extension[C]// Proceedings of the 2014 23rd USENIX Security Symposium. Berkeley: USENIX Association, 2014: 797-812.
|
[16] |
FAN B, ANDERSEN D G, KAMINSKY M, et al. Cuckoo filter: Practically Better Than Bloom[C]// Proceedings of the 2014 ACM Conference on Emerging Networking Experiments and Technologies. New York: ACM, 2014: 75-88.
|
[17] |
王立昌, 方勇. 基于安全多方计算的分布式基因序列相似性计算[J]. 计算机应用研究, 2016,33(12):3681-3685.
|
|
WANG Lichang, FANG Yong. Distributed Genome Similarity Calculation Based on Secure Multiparty Computation[J]. Application Research of Computers, 2016,33(12):3681-3685.
|