[1] |
MERCIER H, BHARGAVA V K, TAROKH V. A Survey of Error-correcting Codes for Channels with Symbol Synchronization Errors[J]. IEEE Communications Surveys and Tutorials, 2010, 12(1): 87-96.
doi: 10.1109/SURV.2010.020110.00079
|
[2] |
YANG G, BARBERO A I, ROSNES E, et al. Error Correction on an Insertion/deletion Channel Applying Codes from RFID Standards[C]// Proceedings of the 2012 Information Theory and Applications Workshop. Washington: IEEE Computer Society, 2012: 137-142.
|
[3] |
CHEE Y M, KIAH H M, VARDY A, et al. Coding for Racetrack Memories[J]. IEEE Transactions on Information Theory, 2018, 64(11): 7094-7112.
doi: 10.1109/TIT.18
|
[4] |
LENZ A, SIEGEL P H, WACHTER-ZEH A, et al. Coding over Sets for DNA Storage[C]// Proceedings of the 2018 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2018: 2411-2415.
|
[5] |
张昭基, 李颖. 适用于突发删除信道的非对称空间耦合LDPC码[J]. 西安电子科技大学学报, 2017, 44(5): 1-6.
|
|
ZHANG Zhaoji, LI Ying. Asymmetric Spatially-coupled LDPC Codes for Burst Erasure Channels[J]. Journal of Xidian University, 2017, 44(5): 1-6.
|
[6] |
HANNA S K, El ROUAYHEB S. Guess Check Codes for Deletions, Insertions, and Synchronization[J]. IEEE Transactions on Information Theory, 2019, 65(1): 3-15.
doi: 10.1109/TIT.2018.2841936
|
[7] |
VARSHAMOV R R, TENENGOLTS G M. Codes Which Correct Single Asymmetric Errors[J]. Automation and Remote Control, 1965, 26(2): 286-290.
|
[8] |
LEVENSHTEIN V I. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J]. Soviet Physics Doklady, 1966, 10(8): 707-710.
|
[9] |
HELBERG A S J, FERREIRA H C. On Multiple Insertion/deletion Correcting Codes[J]. IEEE Transactions on Information Theory, 2002, 48(1): 305-308.
doi: 10.1109/18.971760
|
[10] |
LE T A, NGUYEN H D. New Multiple Insertion/deletion Correcting Codes for Non-binary Alphabets[J]. IEEE Transactions on Information Theory, 2016, 62(5): 2682-2693.
doi: 10.1109/TIT.2016.2541139
|
[11] |
ABDEL-GHAFFAR K A S, PALUNCIC F, FERREIRA H C, et al. On Helberg’s Generalization of the Levenshtein Code for Multiple Deletion/insertion Error Correction[J]. IEEE Transactions on Information Theory, 2012, 58(3): 1804-1808.
doi: 10.1109/TIT.2011.2174961
|
[12] |
HAGIWARA M. A Short Proof for the Multi-deletion Error Correction Property of Helberg Codes[J]. IEICE Communications Express, 2016, 5(2): 49-51.
doi: 10.1587/comex.2015XBL0182
|
[13] |
DAVEY M C, MACKAY D J C. Reliable Communication over Channels with Insertions, Deletions, and Substitutions[J]. IEEE Transactions on Information Theory, 2001, 47(2): 687-698.
doi: 10.1109/18.910582
|
[14] |
JIAO X, ARMAND M A. Soft-input Inner Decoder for the Davey-MacKay Construction[J]. IEEE Communications Letters, 2012, 16(5): 722-725.
doi: 10.1109/LCOMM.2012.032612.112621
|
[15] |
LIU Y, CHEN W. An Iterative Decoding Scheme for Davey-MacKay Construction[J]. China Communication, 2018, 15(6): 187-195.
doi: 10.1109/CC.2018.8398515
|
[16] |
HAEUPLER B, SHAHRASBI A. Synchronization Strings: Explicit Constructions, Local Decoding, and Applications[C]// Proceedings of the 2018 Annual ACM Symposium on Theory of Computing. New York: ACM, 2018: 30-43.
|
[17] |
CHENG K, HAEUPLER B, LI X, et al. Synchronization Strings: Highly Efficient Deterministic Constructions over Small Alphabets[C]// Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2019: 2185-2204.
|