[1] |
HAN J, BHANU B. Individual Recognition Using Gait Energy Image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2):316-322.
doi: 10.1109/TPAMI.34
|
[2] |
CHAO H, HE Y, ZHANG J, et al. GaitSet:Regarding Gait as a Set for Cross-View Gait Recognition[C]. Proceedings of the Thirty-Third AAAI Conference on Artifical Intelligence (AAAI) 2019:8126-8133.
|
[3] |
ZHANG Z, TRAN L, YIN X, et al. Gait Recognition Via Disentangled Representation Learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach:CA,USA, 2019:4705-4714.
|
[4] |
ZHANG K, LUO W, MA L, et al. Learning Joint Gait Representation via Quintuplet Loss Minimization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach:CA,USA, 2019:4695-4704.
|
[5] |
JI S, XU W, YANG M, et al. 3D Convolutional Neural Networks for Human Action Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231.
doi: 10.1109/TPAMI.2012.59
|
[6] |
KARPATHY A, TODERICI G, SHETTY S, et al. Large-Scale Video Classification with Convolutional Neural Networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Columbus:OH,USA, 2014:1725-1732.
|
[7] |
NIXON M S, CARTER J N, NASH J M, et al. Motion Analysis and Tracking[C]//Proceedings of the IEEE Colloquium on Motion Analysis and Tracking.London:UK, 1999:5-6.
|
[8] |
陈昌红; 赵恒; 梁继民; 焦李成. 特征选择对FHMM性能影响研究[J]. 西安电子科技大学学报, 2010, 37(5):934-940.
|
|
CHEN Changhong, ZHAO Heng, LIANG Jimin, JIAO Licheng. Influence of Feature Selection on FHMM[J]. Journal of Xidian University, 2010, 37(5):934-940.
|
[9] |
BASHIR K, XIANG T, GONG S. Gait Recognition Using Gait Entropy Image[C]//Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention(ICDP).London:IET, 2009:1-6.
|
[10] |
毛莺池, 张建华, 陈豪. 一种多视图深度融合的连续性缺失补全方法[J]. 西安电子科技大学学报, 2019, 46(2):61-68.
|
|
MAO Yingchi, ZHANG Jianhua, CHEN Hao. Successive Missing Completion Based on Deep Fusion from Multiple Views[J]. Journal of Xidian University, 2019, 46(2):61-68.
|
[11] |
YIWEIH, JUNPING Z, HONGMING S, et al. Multi-task GANs for View-Specific Feature Learning in Gait Recognition[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1):102-113.
doi: 10.1109/TIFS.2018.2844819
|
[12] |
DAS D, AGARWAL A, CHATTOPADHYAY P, et al. RGait-NET:An Effective Network for Recovering Missing Information from Occluded Gait Cycles[J]. arxiv:1912.067565, 2019.
|
[13] |
LI W, ZHU X, GONG S. Harmonious Attention Network for Person Re-Identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:UT,USA, 2018:2285-2294.
|
[14] |
FU Y, WEI Y, ZHOU Y, et al. Horizontal Pyramid Matching for Person Re-Identification[C]//Proceedings of the Thirty-First Innovative Applications of Artificial Intelligence Conference(AAAI), 2019:8295-8302.
|
[15] |
TAKEMURA N, MAKIHARA Y, MURAMATSU D, et al. Multi-View Large Population Gait Dataset and Its Performance Evaluation for Cross-View Gait Recognition[J]. IPSJ Transactions on Computer Vision and Applications, 2018, 10(1):4.
doi: 10.1186/s41074-018-0039-6
|
[16] |
HU M, WANG Y, ZHANG Z, et al. View-Invariant Discriminative Projection for Multi-View Gait-Based Human Identification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(12):2034-2045.
doi: 10.1109/TIFS.2013.2287605
|
[17] |
KUSAKUNNIRAN W, WU Q, ZHANG J, et al. Recognizing Gaits Across Views Through Correlated Motion Co-Clustering[J]. IEEE Transactions on Image Processing, 2014, 23(2):696-709.
doi: 10.1109/TIP.2013.2294552
|
[18] |
WU Z, HUANG Y, WANG L, et al. A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2017, 39(2):209-226.
|
[19] |
YU S, TAN D, TAN T. A Framework for Evaluating the Effect of View Angle,Clothing and Carrying Condition on Gait Recognition[C]//Proceedings of the 18th International Conference on Pattern Recognition(ICPR).Hong Kong:China, 2006:441-444.
|