Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (1): 102-110.doi: 10.19665/j.issn1001-2400.2022.01.010
• Special Issue on Privacy Computing and Data Security • Previous Articles Next Articles
Received:
2020-10-26
Online:
2022-02-20
Published:
2022-04-27
CLC Number:
HUANG Mengmeng,WU Gaofei. New class of complete permutation monomials over finite fields[J].Journal of Xidian University, 2022, 49(1): 102-110.
"
n | d(d-1) |
---|---|
n=2 | 1(1) |
n=3 | 1(1) |
n=4 | 1(1),4(4) |
n=5 | 1(1) |
n=6 | 1(1),4(16),8(8),10(19),22(43) |
n=7 | 1(1) |
n=8 | 1(1),4(64),16(16),86(86),154(154) |
n=9 | 1(1),8(64),74(366) |
n=10 | 1(1),4(256),16(64),32(32),34(331),67(397) 94(838),280(559),466(652),683(683),745(931) |
n=11 | 1(1) |
n=12 | 1(1),4(1 024),8(512),16(256),64(64),136(271) 274(3 004),316(946),547(1 093),586(2 341),631(2 836) 1 171(3 511),1366(2 731),1 576( 2 206),1 639(1 639),1 891(3 781) 2 146(2 536),2 276(2 276),2 458(3 277),2 521(2 521),3 151(3 466) |
"
p | n | d(d-1) |
---|---|---|
p=3 | n=2 | 1(1),3(3),5(5) |
n=3 | 1(1),3(9) | |
n=4 | 1(1),3(27),9(9),11(51),17(33),41(41),49(49) | |
n=5 | 1(1),3(81),9(27),23(221),45(199) | |
n=6 | 1(1),3(243),9(81),27(27),29(477),53(261),57(281),99(603),113(393) 157(677),183(183),209(209),313(521),365(365),417(625),547(547) | |
n=7 | 1(1),3(729),9(243),27(81) | |
n=8 | 1(1),3(2 187),9(729),27(243),81(81),83(4 347),161(2 241),321(1 921) 329(3 609),411(5 331),481(641),801(3 841),821(2 461),961(4 321) 1 067(3 363),1 121(3 201),1 281(5 121),1 313(3 937),1 441(3 041),1 601(5 761) 1 641(4 921),1 761(4 161),1 969(1 969),2 051( 3 691),2 081(4 801),2 401(5 601) 2 561(6 081),2 721(2 881),3 281(3 281),3 361(3 361),3 521(4 641),3 681(6 241) 4 001(4 481),5 249(5 249),5 281(6 401),5 441(5 921) | |
p | n | d(d-1) |
p=5 | n=2 | 1(1),5(5),7(7),13(13),17(17) |
n=3 | 1(1),5(25),63(63) | |
n=4 | 1(1),5(125),25(25),49(433),53(365),79(79),97(193),145(241),157(469) 209(209),289(529),313(313),337(337),385(577),391(391),521(521) | |
n=5 | 1(1),5(625),25(125),529(1 937),569(2 273),853(1 421) 1 137(2 841),1 563(1 563),1 989(2 557) | |
p=7 | n=2 | 1(1),7(7),13(37),17(17),25(25) |
n=3 | 1(1),7(49),55(199),115(229) | |
n=4 | 1(1),7(343),49(49),97(1 633),151(1 351),193(1 057) 241(2 161),401(401),481(1 921),577(2 113),601(1 801) 673(1 537),721(1 681),961(1 441),1 153(2 017),1 201(1 201) 1 249(1 249),1 601(1 601) | |
p=11 | n=2 | 1(1),11(11),13(37),31(31),41(41),61(61),91(91),101(101) |
n=3 | 1(1),11(121),191(571),267(533),381(761),771(1 261) 799(799),951(951) | |
n=4 | 1(1),11(1 331),121(121),241(9 841),481(2 161),611(7 931) 721(6 721),961(10 801),1 201(10 081),1 441(11 521),1 681(14 161) 1 831(1 831),1 921(3 841),2 401(13 201),2 441(2 441),2 641(13 681) 2 881(8 161),2 929(2 929),3 121(4 081),3 361(4 321),3 601(5 521) 3 661(10 981),4 561(13 921),4 801(8 401),5 041(8 881),5 281(6 961) 5 491(12 811),5 761(7 921),5 857(11 713),6 001(10 561),6 241(12 001) 6 481(11 281),7 201(12 241),7 321(7 321),7 441(7 441),7 681(10 321) 8 641(12 961),9 121(13 441),9 151(9 151),9 361(9 601),9 761(9 761), 10 249(10 249),11 761(14 401),12 481(12 721) |
"
参数p,n,m,k,t,r以及v的取值范围 | 参考文献 |
---|---|
任意素数p,d=1,v∈ | [ |
p=d=3或p=d=5,v-1=-a且a∈ | [ |
奇素数p,d= | [ |
素数p,t为正整数,若p=2,gcd(t,n)≠1,则d=2t;若p≠2,则d=pt,v∈ | [ |
任意素数p,n=n1n2r,n1是p在Z/rZ中的阶,d= | [ |
奇素数p,n=2m,d=2pm-1,p,m和v的取值见文献[20] | [ |
r)≠1 v∈ | [ |
素数p,n=3m,d=p2m+pm+2,p,m和v的取值见文献[3] | [ |
p=2,n=2m,d=s(2m-1)+1,m,s和v的取值见文献[22] | [ |
v∈ | [ |
p=3,n=2m,d=3m+2,v∈ | [ |
p=2,n=rt,r为正整数,t=4,6,10,gcd(t,r)=1,d= | [ |
p=2,n=2m,m为奇数且m≥3,d=2m+1+3,v的取值见文献[10,14] | [ |
参数p,n,m,k,t,r以及v的取值范围 | 参考文献 |
p=2,n=2m,m为奇数且m≥3,d=2m-2(2m+3),v是 | [ |
素数p,n=2m,m,r为正整数,gcd(r-1,pm+1)=1,gcd(2r-1,pm+1)=1, d=r(pm-1)+1,v的取值见文献[26] | [ |
奇素数p,r+1=p,n=rk,d= | [ |
p=2,n=6k,k为正整数且gcd(k,3)=1,d=24k-1+22k-1, v∈S且S:={ | [ |
p=2,n=4k,k为正整数,d=(1+22k-1)(1+22k)+1,v∈ | [ |
奇素数p,n=4k,k为正整数,d= | [ |
素数p,n=2m,d=3pm-2,p,m和v的取值见文献[28] | [ |
素数p,n=2m,d=5pm-4,p,m和v的取值见文献[29] | [ |
素数p,n=2m,d=7pm-6,p,m和v的取值见文献[29] | [ |
p=2,n=4k,k为奇数且k≥3,d= | [ |
p=3,n=2m,m为奇数,d=2·32m-1-3m-1,v的取值见文献[13] | [ |
p=3,n=2m,m为奇数,d=2·3m+3,v∈ | [ |
素数p≡7(mod 12),n=2m,m为奇数,d=2(pm-1)+1,v的取值见文献[13] | [ |
奇素数p,n+1=p,d=t· | [ |
p=2,n=3m,m≥2,gcd(3,m)=1,d=23m-1+23m-2-22m-2-2m-2,v∈ | [ |
d=;若m≡3(mod 4) v∈且(ωv-1)或(ω2v-1)=0 | [ |
v是单位圆中的非三次方元 | [ |
奇素数p>3,n=2m,m为奇数,6|p+1,d=pm+2,v的取值见文献[24,25] | [ |
v∈ | [ |
p=3,d= | [ |
p=7,n=6k,k为正整数,d= | [ |
p=2,n=2m,m为奇数,d= | [ |
p=3,n=2m,m为正整数,d=(3m-3m-1-1)(3m+1)+1,v∈ | [ |
奇素数p>3,n=2m,gcd(3,pm-1)=1,s<pm-1,3s≡1(mod pm-1), d=(pm-s-1)(pm+1)+1,v∈ | [ |
p=5,n=2m,d=(3·5m-1-1)(5m+1)+1,v∈ | [ |
奇素数p≠5,n=2m,gcd(5,pn-1)=1,5s≡1(mod pm-1),t<pm-1,t≡-2s(mod pm-1), d=t(pm+1)+1,v∈ | [ |
奇素数p,n=2m,d= | [ |
奇素数p,n=2m,d= | [ |
奇素数p,n=2m,m为奇数,pm≡3(mod 4),gcd(p2m-1,pm+2)=1,d=pm+2,v∈ | [ |
素数p,n=8k,d= | [ |
素数p,n=8k,d= | [ |
参数p,n,m,k,t,r以及v的取值范围 | 参考文献 |
任意素数p,n=rt,t,k,r,i为正整数,pt-1|r或r=pk,若p=2,gcd(k,t)≠1, 且i=pt-pt-k,d= | [ |
p=2,n=2m,m为正整数,d= | [ |
p为素数,奇素数t+1≠p,n=rt,gcd(t+1,p2r-1)=1,d= | [ |
奇素数p,n=rt,t>1,t|p-1,d= | [ |
奇素数p,n=rt,t>1,t|pr-1,d= | [ |
p=2,n=2m,m为奇数,d= | [ |
素数p,n=2m,d=pm+2,p,m和v的取值见文献[3,16] | [ |
素数p,n=2m,d=2pm+3,p,m和v的取值见文献[16] | [ |
素数p,n=5k,d= | [ |
[1] |
DING C. Cyclic Codes from Some Monomials and Trinomials[J]. SIAM Journal on Discrete Mathematics, 2013, 27(4):1977-1994.
doi: 10.1137/120882275 |
[2] |
DING C, YUAN J. A Family of Skew Hadamard Difference Sets[J]. Journal of Combinatorial Theory Series A, 2006, 113(7):1526-1535.
doi: 10.1016/j.jcta.2005.10.006 |
[3] | ZIEVE E. Permutation Polynomials Induced from Permutations of Subfields,and Some Complete Sets of Mutually Orthogonal Latin Squares (2013)[J/OL]. [2013-12-04]. https://arxiv.org/abs/1312.1325. |
[4] | TUXANIDY A, WANG Q. Compositional Inverses,Complete Mappings,Orthogonal Latin Squares and Bent Functions (2014)[J/OL]. [2014-09-23]. https://arxiv.org/abs/1409.6540. |
[5] |
MANN H B. The Construction of Orthogonal Latin Squares[J]. Annals of Mathematical Statistics, 1942, 13(4):418-423.
doi: 10.1214/aoms/1177731539 |
[6] |
LAIGLE-CHAPUY Y. Permutation Polynomials and Applications to Coding Theory[J]. Finite Fields and Their Applications, 2007, Appl. 13(1):58-70.
doi: 10.1016/j.ffa.2005.08.003 |
[7] |
STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform[J]. IEEE Transactions on Information Theory, 2012, 58(6):4064-4072.
doi: 10.1109/TIT.2012.2186785 |
[8] |
ROTHAUS O S. On “Bent” Functions[J]. Journal of Combinatorial Theory,Series A, 1976, 20(3):300-305.
doi: 10.1016/0097-3165(76)90024-8 |
[9] | NIEDERREITER H, ROBINSON K H. Complete Mappings of Finite Fields[J]. Journal of the Australian Mathematical Society, 1982, 33(2):197-212. |
[10] |
TU Z R, ZENG X Y, HU L. Several Classes of Complete Permutation Polynomials[J]. Finite Fields and Their Applications, 2014, 25:182-193.
doi: 10.1016/j.ffa.2013.09.007 |
[11] |
WU G F, LI N, HELLESETH T, et al. Some Classes of Monomial Complete Permutation Polynomials over Finite Fields of Characteristic Two[J]. Finite Fields and Their Applications, 2014, 28:148-165.
doi: 10.1016/j.ffa.2014.01.011 |
[12] | WU G F, LI N, HELLESETH T, et al. Some Classes of Complete Permutation Polynomials over Fq[J]. Science China Mathematics, 2015, 58(10):2081-2094. |
[13] |
XU G K, CAOX W. Complete Permutation Polynomials over Finite Fields of Odd Characteristic[J]. Finite Fields and Their Applications, 2015, 31:228-240.
doi: 10.1016/j.ffa.2014.08.002 |
[14] |
MA J X, ZHANG T, FENG T, et al. Some New Results on Permutation Polynomials over Finite Fields[J]. Designs,Codes and Cryptography, 2017, 83:425-443.
doi: 10.1007/s10623-016-0236-1 |
[15] |
TU Z R, ZENG X Y, MAO J X, et al. Several Classes of Complete Permutation Polynomials over Finite Fields of even Characteristic[J]. Finite Fields and Their Applications, 2020, 68:101737.
doi: 10.1016/j.ffa.2020.101737 |
[16] |
SHARMA R, GUPTA R. Determination of A Type of Permutation Binomials and Trinomials[J]. Applicable Algebra in Engineering,Communication and Computing, 2020, 31:65-86.
doi: 10.1007/s00200-019-00394-y |
[17] | 许小芳, 曾祥勇, 徐运阁. 完全置换多项式的研究进展[J]. 密码学报, 2019, 6(5):643-664. |
XU Xiaofang, ZENG Xiangyong, XU Yunge. Overview on Complete Permutation Polynomials[J]. Journal of Cryptologic Research, 2019, 6(5):643-664. | |
[18] |
AKBARY A, GHIOCA D, WANG Q. On Constructing Permutations of Finite Fields[J]. Finite Fields and Their Applications, 2011, 17:51-67.
doi: 10.1016/j.ffa.2010.10.002 |
[19] | LIDL R, NIEDERREITER H. Finite Fields[M]. CAMBRIDGE: Cambridge University Press, 1997:1-351. |
[20] |
HOU X. A Class of Permutation Binomials over Finite Fields[J]. Journal of Number Theory, 2013, 133(10):3549-3558.
doi: 10.1016/j.jnt.2013.04.011 |
[21] | WU B, LIN D. Complete Permutation Polynomials Induced from Complete Permutations of Subfields (2013)[J/OL]. [2013-12-19]. https://arxiv.org/abs/1312.5502. |
[22] | TU Z, ZENG X, HU L, et al. A Class of Binomial Permutation Polynomials (2013)[J/OL]. [2013-09-28]. https://arxiv.org/abs/1310.0337. |
[23] | SARKAR S, BHATTACHARYA S, ÇEŞMELIOĞLU A. On Some Permutation Binomials of the Form >$x \frac{2^n -1}{k} + 1$ +ax over $F_{2^n}$ :Existence and Count[C]// International Workshop on the Arithmetic of Finite Fields.Heidelberg:Springer, 2012:236-246. |
[24] | BASSALYGO L, ZINOVIEV V. On Complete Permutation Polynomials (2014)[J/OL]. [2014-09-13]. http://www.moi.math.bas.bg/acct2014/a9.pdf. |
[25] |
BASSALYGO L, ZINOVIEV V. Permutation and Complete Permutation Polynomials[J]. Finite Fields and Their Applications, 2015, 33:198-211.
doi: 10.1016/j.ffa.2014.11.010 |
[26] | ZIEVE E. Permutation Polynomials on Fq Induced from Rédei Function Bijections on Subgroups of Fq*(2013)[J/OL]. [2013-10-07]https://arxiv.org/pdf/1310.0776.pdf. |
[27] | MA J, ZHANG T, FENG T, et al. Some New Results on Permutation Polynomials over Finite Fields (2015)[EB/OL]. [2015-06-18]. https://arxiv.org/abs/1506.05525. |
[28] |
HOU X, LAPPANO S. Determination of a Type of Permutation Binomials over Finite Fields[J]. Journal of Number Theory, 2015, 147:14-23.
doi: 10.1016/j.jnt.2014.06.021 |
[29] | LAPPANO S. A Note Regarding Permutation Binomials over $F_{q^2}$[J]. Finite Fields and Their Applications, 2015, 34:153-160. |
[30] |
BASSALYGO L, ZINOVIEV V. One Class of Permutation Polynomials over Finite Fields of even Characteristic[J]. Moscow Mathematical Journal, 2015, 15(4):703-713.
doi: 10.17323/1609-4514-2015-15-4-703-713 |
[31] |
WU B, LIN D. On Constructing Complete Permutation Polynomials over Finite Fields of even Characteristic[J]. Discrete Applied Mathematics, 2015, 184:213-222.
doi: 10.1016/j.dam.2014.11.008 |
[32] | 查正邦, 胡磊. 有限域上置换多项式的几种构造[J]. 密码学报, 2017, 4(3):291-298. |
ZHA Zhengbang, HU Lei. Several Constructions of Permutation Polynomials over Finite Fields[J]. Journal of Cryptologic Research, 2017, 4(3):291-298. | |
[33] | FERNANDO N. A Note on Permutation Binomials and Trinomials over Finite Fields (2016))[EB/OL]. [2016-09-22]. https://arxiv.org/abs/1609.07162. |
[34] |
BARTOLI D, GIULIETTI M, ZINI G. On Monomial Complete Permutation Polynomials[J]. Finite Fields and Their Applications, 2016, 41:132-158.
doi: 10.1016/j.ffa.2016.06.005 |
[35] | ZOUBIR N, GUENDA K. Some New Permutation Polynomials over Finite Fields (2017)[EB/OL]. [2017-04-30]. https://arxiv.org/abs/1705.01484. |
[36] | BARTOLI D, GIULIETTI M, QUOOS L, et al. Complete Permutation Polynomials from Excepyional Polynomials[J]. Joural of Number Theory, 2017, 176:46-66. |
[37] | 查正邦, 胡磊. 有限域上几类置换和完全置换[J]. 密码学报, 2019, 6(5):665-674. |
ZHA Zhengbang, HU Lei. A Few Classes of Permutations and Complete Permutations over Finite Fields[J]. Journal of Cryptologic Research, 2019, 6(5):665-674. | |
[38] | LIU X. Further Results on Some Classes of Permutation Polynomials over Finite Fields (2019)[EB/OL]. [2019-07-08]. https://arxiv.org/abs/1907.03386v1. |
[39] |
FENG X, LIN D, WANG L, et al. Further Results on Complete Permutation Monomials over Finite Fields[J]. Finite Fields and Their Applications, 2019, 57:47-59.
doi: 10.1016/j.ffa.2019.01.003 |
[40] |
LI L S, LI C Y, LI C L, et al. New Classes of Complete Permutation Polynomials[J]. Finite Fields and Their Applications, 2019, 55:177-201.
doi: 10.1016/j.ffa.2018.10.001 |
[41] |
ONGAN P, TEMÜR B. A SpecificType of Permutation and Complete Permutation Polynomials over Finite Fields[J]. Journal of Algebra and Its Applications, 2020, 19(4):2050067.
doi: 10.1142/S021949882050067X |
[1] | Lü Xizai;HUANG Zhiping;SU Shaojing. Fast recognition method for generator polynomial of BCH codes [J]. J4, 2011, 38(6): 159-162+172. |
|