[1] |
杨坤德, 马远良, 史阳. 西太平洋蒸发波导的时空统计规律研究[J]. 物理学报, 2009, 58(10):7339-7350.
doi: 10.7498/aps.58.7339
|
|
YANG Kunde, MA Yuanliang, SHI Yang. Spatio-Temporal Distributions of Evaporation Duct for the West Pacific Ocean[J]. Acta Physica Sinica, 2009, 58(10):7339-7350.
doi: 10.7498/aps.58.7339
|
[2] |
QIAN C, LIU A, HUANG R, et al. Quality Control of Marine Big Data-A Case Study of Real-Time Observation Station Data in Qingdao[J]. Journal of Oceanology and Limnology, 2019, 37:1983-1993.
doi: 10.1007/s00343-019-8258-y
|
[3] |
孙利民, 李建中, 陈渝, 等. 无线传感器网络[M]. 北京: 清华大学出版社, 2008.
|
[4] |
杨杰, 蒋俊正. 利用联合图模型的传感器网络数据修复方法[J]. 西安电子科技大学学报, 2020, 47(1):44-51.
|
|
YANG Jie, JIANG Junzheng.Method for Data Recovery in the Sensor Network Based on the Joint Graph Model[J]. Journal of Xidian University, 2020, 47(1):44-51.
|
[5] |
LI J, JIA X, LV X, et al. Opportunistic Routing with Data Fusion for Multi-Source Wireless Sensor Networks[J]. Wireless Networks, 2019, 25(6):3103-3113.
doi: 10.1007/s11276-018-1705-4
|
[6] |
BAJWA W, HAUPT J, SAYEED A, et al. Compressive Wireless Sensing[C]// Proceedings of the 5th International Conference on Information Processing in Sensor Networks.Piscataway:IEEE, 2006:134-142.
|
[7] |
LUO C, WU F, SUN J. Compressive Data Gathering for Large-Scale Wireless Sensor Networks[C]// Proceedings of the 15th Annual International Conference on Mobile Computing and Networking.Piscataway:IEEE, 2009:20-25.
|
[8] |
ZHENG H, LI J, FENG X, et al. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks[J]. Sensors, 2017, 17(11):2575-2597.
doi: 10.3390/s17112575
|
[9] |
NGUYENM T, TEAGUE K A, RAHNAVARD N. CCS:Energy-Efficient Data Collection in Clustered Wireless Sensor Networks Utilizing Block-Wise Compressive Sensing[J]. Computer Networks, 2016, 106:171-185.
doi: 10.1016/j.comnet.2016.06.029
|
[10] |
WU X, XIONG Y, YANG P, et al. Sparsest Random Scheduling for Compressive Data Gathering in Wireless Sensor Networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(10):5867-5877.
doi: 10.1109/TWC.2014.2332344
|
[11] |
VASWANI N. LS-CS-Residual (LS-CS):Compressive Sensing on Least Squares Residual[J]. IEEE Transactions on Signal Processing, 2009, 58(8):4108-4120.
doi: 10.1109/TSP.2010.2048105
|
[12] |
VASWANI N, LU W. Modified-CS:Modifying Compressive Sensing for Problems with Partially Known Support[J]. IEEE Transactions on Signal Processing, 2010, 58(9):4595-4607.
doi: 10.1109/TSP.2010.2051150
|
[13] |
BALAVOINE A, ROZELL C J, ROMBERG J. Discrete and Continuous-Time Soft-Thresholding for Dynamic Signal Recovery[J]. IEEE Transactions on Signal Processing, 2015, 63(12):3165-3176.
doi: 10.1109/TSP.2015.2420535
|
[14] |
CHARLES A S, BALAVOINE A, ROZELL C J. Dynamic Filtering of Time-Varying Sparse Signals via ℓ1 Minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(21):5644-5656.
doi: 10.1109/TSP.2016.2586745
|
[15] |
SCHWARTZ J, ZHENG H, HANWELL M, et al. Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction[J]. Ultramicroscopy, 2020, 219:113122.
doi: 10.1016/j.ultramic.2020.113122
|
[16] |
SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction[J]. IEEE Transactions on Medical Imaging, 2019, 37(2):491-503.
doi: 10.1109/TMI.2017.2760978
|
[17] |
KARIMI H S, NATARAJAN B. Kalman Filtered Compressive Sensing with Intermittent Observations[J]. Signal Processing, 2019, 163:49-58.
doi: 10.1016/j.sigpro.2019.05.004
|
[18] |
BAEANE P, KANNU A P. Time Varying Sparse Support Recovery[J]. Signal Processing, 2019, 161:214-226.
doi: 10.1016/j.sigpro.2019.04.001
|
[19] |
LEINONEN M, CODREANU M, JUNTTI M. Sequential Compressed Sensing with Progressive Signal Reconstruction in Wireless Sensor Networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3):1622-1635.
doi: 10.1109/TWC.2014.2371017
|
[20] |
HUANG J, ZHANG S, METAXAS D. Efficient MR Image Reconstruction for Compressed MR Imaging[J]. Medical Image Analysis, 2011, 15(5):670-679.
doi: 10.1016/j.media.2011.06.001
|
[21] |
ECKSTEIN J, BERTSEKAS D. On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators[J]. Mathematical Programming, 1992, 55:293-318.
doi: 10.1007/BF01581204
|
[22] |
DUARTE M F, BARANIUK R G. Kronecker Compressive Sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2):494-504.
doi: 10.1109/TIP.2011.2165289
|