Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (2): 173-181.doi: 10.19665/j.issn1001-2400.2022.02.020
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
GU Zhaojun1(),LIU Tingting1,2(),SUI He3()
Received:
2020-07-30
Online:
2022-04-20
Published:
2022-05-31
Contact:
He SUI
E-mail:zjgu@cauc.edu.cn;max_ttliu@163.com;hsui@cauc.edu.cn
CLC Number:
GU Zhaojun,LIU Tingting,SUI He. Latent feature reconstruction generative GAN model for ICS anomaly detection[J].Journal of Xidian University, 2022, 49(2): 173-181.
[1] | 彭勇, 江常青, 谢丰, 等. 工业控制系统信息安全研究进展[J]. 清华大学学报(自然科学版), 2012, 52(10):1396-1408. |
PENG Yong, JIANG Changqing, XIE Feng, et al. Industrial Control System Cybersecurity Research[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(10):1396-1408. | |
[2] | 杨安, 孙利民, 王小山, 等. 工业控制系统入侵检测技术综述[J]. 计算机研究与发展, 2016, 53(9):2039-2054. |
YANG An, SUN Liming, WANG Xiaoshan, et al. Intrusion Detection Techniques for Industrial Control Systems[J]. Journal of Computer Research and Development, 2016, 53(9):2039-2054 | |
[3] | CARDENAS A A, AMIN S, LIN Z S, et al. Attacks Against Process Control Systems:Risk Assessment,Detection,and Response[C]// Proceedings of the 6th ACM Symposium on Information,Computer and Communications Security. New York: ACM, 2011:355-366. |
[4] |
VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K, et al. A Review of Process Fault Detection and Diagnosis:Part I:Quantitative Model-Based Methods[J]. Computers & Chemical Engineering, 2003, 27(3):293-311.
doi: 10.1016/S0098-1354(02)00160-6 |
[5] | 卿斯汉, 蒋建春, 马恒太, 等. 入侵检测技术研究综述[J]. 通信学报, 2004, 25(7):19-29. |
QING Sihan, JIANG Jianchun, MA Hengtai, et al. Research on Intrusion Detection Techniques:A Survey[J]. Journal on Communications, 2004, 25(7):19-29 | |
[6] | 张文安, 洪榛, 朱俊威, 等. 工业控制系统网络入侵检测方法综述[J]. 控制与决策, 2019, 34(11):2277-2288. |
ZHANG Wenan, HONG Zhen, ZHU Junwei, et al. A Survey of Network Intrusion Detection Methods for Industrial Control Systems[J]. Control and Decision, 2019, 34(11):2277-2288. | |
[7] | 阎巧, 谢维信. 异常检测技术的研究与发展[J]. 西安电子科技大学学报, 2002, 29(1):128-132. |
YAN Qiao, XIE Weixin. Research on and Development of Anomaly Detection[J]. Journal of Xidian University, 2002, 29(1):128-132. | |
[8] | MITCHELL R, CHEN I R. A Survey of Intrusion Detection Techniques for Cyber-Physical Systems[J]. ACM Computing Surveys, 2014, 46(4):1-29. |
[9] | 朱斐, 吴文, 伏玉琛, 等. 基于双深度网络的安全深度强化学习方法[J]. 计算机学报, 2019, 42(8):1812-1826. |
ZHU Fei, WU Wen, FU Yuchen, et al. A Dual Deep Network Based Secure Deep Reinforcement Learning Method[J]. Chinese Journal of Computers, 2019, 42(8):1812-1826. | |
[10] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2):346-362. |
LIU Junxu, MENG Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2):346-362. | |
[11] |
李佳, 云晓春, 李书豪, 等. 基于混合结构深度神经网络的HTTP恶意流量检测方法[J]. 通信学报, 2019, 40(1):24-33.
doi: 10.1111/j.1460-2466.1990.tb02248.x |
LI Jia, YUN Xiaochun, LI Shuhao, et al. HTTP Malicious Traffic Detection Method Based on Hybrid Structure Deep Neural Network[J]. Journal on Communications, 2019, 40(01):24-33.
doi: 10.1111/j.1460-2466.1990.tb02248.x |
|
[12] | HAN J, KAMBER M, PEI J. Data Mining:Concepts and Techniques[M]. Amsterdam:Elsevier, 2011. |
[13] | GUO T, XU Z, YAO X, et al. Robust Online Time Series Prediction with Recurrent Neural Networks[C]// 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).Piscataway:IEEE, 2016:816-825. |
[14] | TAYLOR A, LEBLANC S, JAPKOWICZ N. Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks[C]// 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).Piscataway:IEEE, 2016:130-139. |
[15] | 梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7):523-529. |
LIANG Jie, CHEN Jiahao, ZHANG Xueqin, et al. One-Hot Encoding and Convolutional Neural Network Based Anomaly Detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):523-529. | |
[16] | ZONG B, SONG Q, MIN M, et al. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection[C]// International Conference on Learning Representations (ICLR). La Jolla: ICLR, 2018:1-19. |
[17] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014:2672-2680. |
[18] | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[C]// International Conference on Information Processing in Medical Imaging.Heidelberg:Springer, 2017:146-157. |
[19] | LI D, CHEN D, JIN B, et al. MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]// International Conference on Artificial Neural Networks.Heidelberg:Springer, 2019:703-716. |
[20] | 姜少彬, 杜春, 陈浩, 等. 一种硬盘故障预测的非监督对抗学习方法[J]. 西安电子科技大学学报, 2020, 47(2):118-125. |
JIANG Shaobin, DU Chun, CHEN Hao, et al. Unsupervised Adversarial Learning Method for Hard Disk Failure Prediction[J]. Journal of Xidian University, 2020, 47(2):118-125. | |
[21] | DONAHUE J, KRÄHENBÜHL P, DARRELL T. Adversarial Feature Learning(2016)[J/OL].[2016-05-31]. https://arxiv.org/pdf/1605.09782.pdf. |
[22] | ZENATI H, FOO C S, LECOUAT B, et al. Efficient Gan-Based Anomaly Detection(2018)[J/OL]. [2018-02-17]. https://arxiv.org/pdf/1802.06222v2.pdf. |
[23] | CHEN H, JIANG L. GAN-Based Method for Cyber-Intrusion Detection(2019)[J/OL].[2019-04-04]. https://arxiv.org/pdf/1904.02426v1.pdf. |
[24] | AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKONT P. GANomaly:Semi-Supervised Anomaly Detection via Adversarial Training[C]// Asian conference on computer vision.Heidelberg:Springer, 2018:622-637. |
[25] |
JIANG W, HONG Y, ZHOU B, et al. A GAN-Based Anomaly Detection Approach for Imbalanced Industrial Time Series[J]. IEEE Access, 2019, 7:143608-143619.
doi: 10.1109/ACCESS.2019.2944689 |
[26] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372 |
[27] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN(2017)[J/OL].[2017-01-26]. https://arxiv.org/pdf/1701.07875.pdf. |
[28] | SRIVASTAVA A, VALKOV L, RUSSELL C, et al. VEEGAN:Reducing Mode Collapse in GANs Using Implicit Variational Learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:3310-3320. |
[29] | MATHUR A, TIPPENHAUER N O. SWaT:A Water Treatment Testbed for Research and Training on ICS Security[C]// Proceedings of International Workshop on Cyber-Physical Systems for Smart Water Networks(CySWater).Piscataway:IEEE, 2016:31-36. |
[30] | GOH J, ADEPU S, JUNEJO K N, et al. A Dataset to Support Research in the Design of Secure Water Treatment Systems[C]// International Conference on Critical Information Infrastructures Security.Heidelberg:Springer, 2016:88-99. |
[31] | BIHKOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs (2018)[J/OL].[2018-01-04]. https://arxiv.org/pdf/1801.01401v5.pdf. |
[1] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[2] | YU Haoyang,YIN Liang,LI Shufang,LV Shun. Recognition algorithm for the little sample radar modulation signal based on the generative adversarial network [J]. Journal of Xidian University, 2021, 48(6): 96-104. |
[3] | YANG Jingbo,ZHAO Qijun,LYU Zejun. Synthesis of the expression image and its application under the dimentional emotion model [J]. Journal of Xidian University, 2021, 48(5): 30-37. |
[4] | WANG Junjun,SUN Yue,LI Ying. Cloud removal method for the remote sensing image based on the GAN [J]. Journal of Xidian University, 2021, 48(5): 23-29. |
[5] | SUN Yanjing,WEI Li,ZHANG Nianlong,YUN Xiao,DONG Kaiwen,GE Min,CHENG Xiaozhou,HOU Xiaofeng. Person re-identification method combining the DD-GAN and Global feature in a coal mine [J]. Journal of Xidian University, 2021, 48(5): 201-211. |
[6] | WEI Ziyu,YANG Xi,WANG Nannan,YANG Dong,GAO Xinbo. Reciprocal bi-directional generative adversarial network for cross-modal pedestrian re-identification [J]. Journal of Xidian University, 2021, 48(2): 205-212. |
[7] | JIANG Shaobin,DU Chun,CHEN Hao,LI Jun,WU Jiangjiang. Unsupervised adversarial learning method for hard disk failure prediction [J]. Journal of Xidian University, 2020, 47(2): 118-125. |
[8] | YANG Xiaoli,LIN Suzhen. Method for multi-band image feature-level fusion based on the attention mechanism [J]. Journal of Xidian University, 2020, 47(1): 120-127. |
[9] | ZHANG Zhiyuan,DIAO Yinghua. Pedestrian trajectory prediction model with social features and attention [J]. Journal of Xidian University, 2020, 47(1): 10-17. |
[10] | JIA Yufeng,MA Li. Self-attention generative adversarial network with the conditional constraint [J]. Journal of Xidian University, 2019, 46(6): 163-171. |
[11] | HU Mengxiao,LU Wang,XU Can,LAI Jiazhe. Satellite RCS anomaly detection using the GRU model [J]. Journal of Xidian University, 2019, 46(6): 125-130. |
[12] | SHEN Haijie,BIAN Qian,CHEN Xiaofan,WANG Zhenduo,TIAN Xinzhi. Video deblurring using the generative adversarial network [J]. Journal of Xidian University, 2019, 46(6): 112-117. |
[13] | MO Jianwen,XU Kailiang,LIN Leping,OUYANG Ning. Text-to-image generation combined with mutual information maximization [J]. Journal of Xidian University, 2019, 46(5): 180-188. |
[14] | CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi. Face image super-resolution with an attention mechanism [J]. Journal of Xidian University, 2019, 46(3): 148-153. |
[15] | TIAN Yuling. Dendritic cell algorithm for time series oriented anomaly detection [J]. J4, 2014, 41(4): 144-150. |
|