[1] |
郭泽坤, 田隆, 韩宁, 等. 采用CNN-SSD的雷达HRRP小样本目标识别方法[J]. 西安电子科技大学学报, 2021, 48(2):7-14.
|
|
GUO Zekun, TIAN Long, HAN Ning, et al. CNN-SSD Radar HRRP Small Sample Target Recognition Method is Adopted[J]. Journal of Xidian University, 2021, 48(2):7-14.
|
[2] |
王俊祥, 黄霖, 张影, 等. 低复杂度的增强图像来源检测算法[J]. 西安电子科技大学学报, 2021, 48(1):96-106.
|
|
WANG Junxiang, HUANG Lin, ZHANG Ying, et al. Low Complexity Enhanced Image Source Detection Algorithm[J]. Journal of Xidian University, 2021, 48(1):96-106.
|
[3] |
MEHMOOD Z, ASGHAR S. Customizing SVM as A Base Learner with AdaBoost Ensemble to Learn from Multi-Class Problems:A Hybrid Approach AdaBoost-MSVM[J]. Knowledge-Based Systems, 2021, 217:106845.
doi: 10.1016/j.knosys.2021.106845
|
[4] |
MOODI M, GHAZVINI M, MOODI H. A Hybrid Intelligent Approach to Detect Android Botnet Using Smart Self-Adaptive Learning-Based PSO-SVM[J]. Knowledge-Based Systems, 2021, 222:106988.
doi: 10.1016/j.knosys.2021.106988
|
[5] |
SUYKENS J, VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
doi: 10.1023/A:1018628609742
|
[6] |
YANG A, LI W, YANG X. Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machine[J]. Knowledge-Based Systems, 2019, 163:159-173.
doi: 10.1016/j.knosys.2018.08.027
|
[7] |
HE C, WU T, LIU C, et al. A Novel Method of Composite Multiscale Weighted Permutation Entropy and Machine Learning for Fault Complex System Fault Diagnosis[J]. Measurement, 2020, 158:107748.
doi: 10.1016/j.measurement.2020.107748
|
[8] |
WANG J, SHAO W, JUNSEOK K. Combining MF-DFA and LSSVM for Retina Images Classification[J]. Biomedical Signal Processing and Control, 2020, 60:101943.
doi: 10.1016/j.bspc.2020.101943
|
[9] |
DONG L, LIAO J. Wavelet Kernel Function Based Multiscale LSSVM for Elliptic Boundary Value Problems[J]. Neurocomputing, 2019, 356:40-51.
doi: 10.1016/j.neucom.2019.04.076
|
[10] |
SUYKENS J A K, DE BRABANTER J, LUKAS L, et al. Weighted Least Squares Support Vector Machines:Robustness and Sparse Approximation Combining MF-DFA and LSSVM for Retina Images Classification[J]. Neurocomputing, 2002, 48(1-4):85-105.
doi: 10.1016/S0925-2312(01)00644-0
|
[11] |
YANG X, TAN L, HE L. A Robust Least Squares Support Vector Machine for Regression and Classification with Noise[J]. Neurocomputing, 2014, 140:41-52.
doi: 10.1016/j.neucom.2014.03.037
|
[12] |
MA J, ZHOU S, LI D. Robust Multiclass Least Squares Support Vector Classifier with Optimal Error Distribution[J]. Knowledge-Based Systems, 2021, 215:106652.
doi: 10.1016/j.knosys.2020.106652
|
[13] |
CHEN L, ZHOU S. Sparse Algorithm for Robust LSSVM in Primal Space[J]. Neurocomputing, 2018, 275:2880-2891.
doi: 10.1016/j.neucom.2017.10.011
|
[14] |
LIN C, WANG S. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks. 2002, 13(2):464-471.
doi: 10.1109/72.991432
|
[15] |
TANG W. Fuzzy SVM with A New Fuzzy Membership Function to Solve the Two-Class Problems[J]. Neural Processing Letters, 2011, 34(3):209-219.
doi: 10.1007/s11063-011-9192-y
|
[16] |
BATUWITA R, PALADE V. FSVM-CIL:Fuzzy Support Vector Machines for Class Imbalance Learning[J]. IEEE Transactions on Fuzzy Systems. 2010, 18 (3):558-571.
doi: 10.1109/TFUZZ.2010.2042721
|
[17] |
LIU J. Fuzzy Support Vector Machine for Imbalanced Data with Borderline Noise[J]. Fuzzy Sets and Systems, 2021, 413:64-73.
doi: 10.1016/j.fss.2020.07.018
|
[18] |
TAO X, LI Q, REN C, et al. Affinity and Class Probability-Based Fuzzy Support Vector Machine for Imbalanced Data Sets[J]. Neural Networks, 2020, 122:289-307.
doi: S0893-6080(19)30338-7
pmid: 31739268
|
[19] |
FAN Q, WANG Z, LI D, et al. Entropy-Based Fuzzy Support Vector Machine for Imbalanced Datasets[J]. Knowledge-Based Systems, 2017, 115:87-99.
doi: 10.1016/j.knosys.2016.09.032
|
[20] |
ATANASSOV K. Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems, 1986, 20:87-96.
doi: 10.1016/S0165-0114(86)80034-3
|
[21] |
哈明虎, 黄澍, 王超, 等. 直觉模糊支持向量机[J]. 河北大学学报. 2011, 31(3):225-229.
|
|
HA Minghu, HUANG Shu, WANG Chao, et al. Intuitionistic Fuzzy Support Vector Machine[J]. Journal of Hebei University, 2011, 31(3):225-229.
|
[22] |
HA M, WANG C, CHEN J. The Support Vector Machine Based on Intuitionistic Fuzzy Number and Kernel Function[J]. Soft Computing, 2013, 17:635-641.
doi: 10.1007/s00500-012-0937-y
|
[23] |
REZVANI S, WANG X, POURPANAH F. Intuitionistic Fuzzy Twin Support Vector Machines[J]. IEEE Transactions on Fuzzy Systems, 2019, 27:2140-2151.
doi: 10.1109/TFUZZ.2019.2893863
|
[24] |
HAN J, KAMBER M. Data Mining:Concepts and Techniques[M]. Amsterdam: Elsevier, 2012.
|