[1] |
ALSALEMI A, RAMADAN M, BENSAALI F, et al. Endorsing Domestic Energy Saving Behavior Using Micro-Moment Classification[J]. Applied Energy, 2019, 250:1302-1311.
doi: 10.1016/j.apenergy.2019.05.089
|
[2] |
蒋忠远, 张秀艳, 马子玥. 智能电网中电能存储系统的容量优化[J]. 西安电子科技大学学报, 2015, 42(6):106-112.
|
|
JIANG Zhongyuan, ZHANG Xiuyan, MA Ziyue. Capacity Optimization for Power Storage Systems in Smart Grids[J]. Journal of Xidian University, 2015, 42(6):106-112.
|
[3] |
刘迪迪, 孙浩天, 肖佳文, 等. 智能电网中终端用户的双向能量交易算法[J]. 西安电子科技大学学报, 2021, 48(3):131-137.
|
|
LIU Didi, SUN Haotian, XIAO Jiawen, et al. Two-Way Energy Trading Algorithms for the End-User in the Smart Grid.Journal of Xidian University[J]. 2021, 48(3):131-137.
|
[4] |
CZÉTÁNY L, VÁMOS V, HORVÁTH M, et al. Development of Electricity Consumption Profiles of Residential Buildings Based on Smart Meter Data Clustering[J]. Energy and Buildings, 2021, 252:111376.
doi: 10.1016/j.enbuild.2021.111376
|
[5] |
ZHOU Y, LI F, LIU L, et al. Non-Intrusive Load Monitoring Method Based on the Time-Segmented State Probability[J]. Energy Reports, 2022, 8(S4):1418-1423.
doi: 10.1016/j.egyr.2022.02.021
|
[6] |
PARASKEVAS I, BARBAROSOU M, FITTON R, et al. Domestic Smart Metering Infrastructure and A Method for Home Appliances Identification Using Low-Rate Power Consumption Data[J]. IET Smart Cities, 2021, 3(2):91-106.
doi: 10.1049/smc2.v3.2
|
[7] |
FANG Z, ZHAO D, CHEN C, et al. Non-Intrusive Appliance Identification with Appliance-Specific Networks[C]// 2019 IEEE Industry Applications Society Annual Meeting.Piscataway:IEEE, 2019:1-8.
|
[8] |
YAN D, JIN Y, SUN H, et al. Household Appliance Recognition through A Bayes Classification Model[J]. Sustainable Cities and Society, 2019, 46:101393.
doi: 10.1016/j.scs.2018.12.021
|
[9] |
HIMEUR Y, ALSALEMI A, BENSAALI F, et al. Smart Non-Intrusive Appliance Identification Using A Novel Local Power Histogramming Descriptor with An Improved K-nearest Neighbors Classifier[J]. Sustainable Cities and Society, 2021, 67:102764.
doi: 10.1016/j.scs.2021.102764
|
[10] |
周晓, 李永清, 张有兵. 基于ELM的非侵入式电力负荷识别算法[J]. 高技术通讯, 2020, 30(10):1018-1024.
|
|
ZHOU Xiao, LI Yongqing, ZHANG Youbing. Identification Algorithm for Non-Intrusive Power Load Based on ELM[J]. Chinese High Technology Letters, 2020, 30(10):1018-1024.
|
[11] |
UTOMO D, HSIUNG P A. Anomaly Detection at the IoT Edge Using Deep Learning[C]// 2019 IEEE International Conference on Consumer Electronics - Taiwan(ICCE-TW).Piscataway:IEEE, 2019:1-2.
|
[12] |
周明, 宋旭帆, 涂京, 等. 基于非侵入式负荷监测的居民用电行为分析[J]. 电网技术, 2018, 42(10):3268-3274.
|
|
ZHOU Ming, SONG Xufan, TU Jing, et al. Residential Electricity Consumption Behavior Analysis Based on Non-Intrusive Load Monitoring[J]. Power System Technology, 2018, 42(10):3268-3274.
|
[13] |
汪颖, 杨维, 肖先勇, 等. 基于U-I轨迹曲线精细化识别的非侵入式居民负荷监测方法[J]. 电网技术, 2021, 45(10):4104-4113.
|
|
WANG Ying, YANG Wei, XIAO Xianyong, et al. Non-Intrusive Residential Load Monitoring Method Based on Refined Identification of U-I Trajectory Curve[J]. Power System Technology, 2021, 45(10):4104-4113.
|
[14] |
曲朝阳, 于华涛, 郭晓利. 基于开启瞬时负荷特征的家电负荷识别[J]. 电工技术学报, 2015, 30(S1):358-364.
|
|
QU Zhaoyang, YU Huatao, GUO Xiaoli. The Recognition of Appliances Instantaneous Load[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):358-364.
|
[15] |
祁兵, 程媛, 武昕. 基于Fisher有监督判别的非侵入式居民负荷辨识方法[J]. 电网技术, 2016, 40(8):2484-2490.
|
|
QI Bing, CHENG Yuan, WU Xin. Non-Intrusive Household Appliance Load Identification Method Based on Fisher Supervised Discriminant[J]. Power System Technology, 2016, 40(8):2484-2490.
|
[16] |
NWAKANMAC I, ISLAM F B, MAHARANI M P, et al. IoT-Based Vibration Sensor Data Collection and Emergency Detection Classification using Long Short Term Memory(LSTM)[C]// 2021 International Conference on Artificial Intelligence in Information and Communication(ICAIIC).Piscataway:IEEE, 2021:273-278.
|
[17] |
ZHAO S, WANG C, BIAN X. Research on Harmonic Detection Based on Wavelet Threshold and FFT Algorithm[J]. Systems Science & Control Engineering An Open Access Journal, 2018, 6(3):339-345.
|
[18] |
ANDERSON K, OCNEANU A, BENITEZ D, et al. BLUED:A Fully Labeled Public Dataset for Event-based Nonintrusive Load Monitoring Research[C]// Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability(SustKDD). New York: ACM, 2012:1-5.
|
[19] |
SINKEVYCH O, BOYKO Y, RECHYNSKYI O, et al. Embedding Sequence Model in STM32 Based Neuro-Controller[C]// 2021 IEEE 12th International Conference on Electronics and Information Technologies(ELIT).Piscataway:IEEE, 2021:113-118.
|