[1] |
DONOHO D L . Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
doi: 10.1002/mrm.28135
pmid: 31863516
|
[2] |
王峰, 向新, 易克初 , 等. 支撑驱动的非凸压缩感知恢复算法[J]. 西安电子科技大学学报, 2016,43(2):1-5.
|
|
WANG Feng, XIANG Xin, YI Kechu , et al. Support Driven Recovery Algorithm for Non-convex Compressed Sensing[J]. Journal of Xidian University, 2016,43(2):1-5.
|
[3] |
BANITALBI-DEHKORDI M, BANITALBI-DEHKORDI A, ABOUEI J , et al. Face Recognition Using a New Compressive Sensing-based Feature Extraction Method[J]. Multimedia Tools and Applications, 2018,77(11):14007-14027.
doi: 10.1007/s11042-017-5007-0
|
[4] |
LI L C, LI D J, PAN Z H . Compressed Sensing Application in Interferometric Synthetic Aperture Radar[J]. Science China Information Sciences, 2017,60(10):102305.
doi: 10.1007/s11432-016-9017-6
|
[5] |
SEITZER M, YANG G, SCHLEMPER J , et al. Adversarial and Perceptual Refinement for Compressed Sensing MRI Reconstruction[C]//Lecture Notes in Computer Science: 11070LNCS. Heidelberg: Springer Verlag, 2018: 232-240.
|
[6] |
刘学文, 肖嵩, 薛晓 . 经验模态分解构造观测矩阵的方法[J]. 西安电子科技大学学报, 2018,45(1):35-41.
|
|
LIU Xuewen, XIAO Song, XUE Xiao . Measurement Matrix Construction Based on Empirical ModeDecomposition[J]. Journal of Xidian University, 2018,45(1):35-41.
|
[7] |
EMMANUEL J C . The Restricted Isometry Property and Its Implications for Compressed Sensing[J]. Comptes Rendus Mathématique, 2008,346(9/10):589-592.
doi: 10.1073/pnas.1700203114
pmid: 28611224
|
[8] |
ELAD M . Optimized Projections for Compressed Sensing[J]. IEEE Transactions on Signal Processing, 2007,55(12):5695-5702.
doi: 10.1002/mrm.27678
pmid: 30773679
|
[9] |
ABOLGHASEMI V, FERDOWSI S, SANEI S . A Gradient-based Alternating Minimization Approach for Optimization of the Measurement Matrix in Compressive Sensing[J]. Signal Processing, 2012,92(4):999-1009.
doi: 10.1016/j.sigpro.2011.10.012
|
[10] |
LI Q W, ZHU Z H, LI G , et al. Robust Projection Matrix Optimization from the MSE View for Compressive Sensing Systems[C]// IEEE International Conference on Signal Processing. Kunming: IEEE Press, 2013: 6663992.
|
[11] |
LI G, ZHU Z, YANG D , et al. On Projection Matrix Optimization for Compressive Sensing Systems[J]. IEEE Transactions on Signal Processing, 2013,61(11):2887-2898.
doi: 10.1109/TSP.2013.2253776
|
[12] |
BAI H, LI S, HE X X . Sensing Matrix Optimization Based on Equiangular Tight Frames with Consideration of Sparse Representation Error[J]. IEEE Transactions on Multimedia, 2016,18(10):2040-2053.
doi: 10.1109/TMM.2016.2595261
|
[13] |
WELCH L . Lower Bounds on the Maximum Cross Correlation of Signals[J]. IEEE Transactions on Information Theory, 1974,20(3):397-399.
doi: 10.1109/TIT.1974.1055219
|
[14] |
HONG T, ZHU Z . An Efficient Method for Robust Projection Matrix Design[J]. Signal Processing, 2018,143:200-210.
doi: 10.1016/j.sigpro.2017.09.007
|
[15] |
HONG T, ZHU Z . Online Learning Sensing Matrix and Sparsifying Dictionary Simultaneously for Compressive Sensing[J]. Signal Processing, 2018,153:188-196.
doi: 10.1016/j.sigpro.2018.05.021
|
[16] |
LI G, ZHU Z H, WU X M , et al. On Joint Optimization of Sensing Matrix and Sparsifying Dictionary for Robust Compressed Sensing Systems[J]. Digital Signal Processing: A Review Journal, 2018,73:62-71.
doi: 10.1016/j.dsp.2017.10.023
|
[17] |
RUSU C, GONZALEZ-PRELCIC N . Designing Incoherent Frames through Convex Techniques for Optimized Compressed Sensing[J]. IEEE Transactions on Signal Processing, 2016,64(9):2334-2344.
doi: 10.1109/TSP.2016.2521607
|