[1] |
ZHOU P, PAUL A, KIM C H, et al. Distributed On-chip Switched-capacitor DC-DC Converters Supporting DVFS in Multicore Systems[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014,22(9):1954-1967.
doi: 10.1109/TVLSI.2013.2280139
|
[2] |
RAMADASS Y K. Energy Processing Circuits for Low-power Applications[D]. Cambridge: Massachusetts Institute of Technology, 2009.
|
[3] |
LI Y, ZHUO C, ZHOU P. A Cross-layer Framework for Temporal Power and Supply Noise Prediction[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019,38(10):1914-1927.
doi: 10.1109/TCAD.43
|
[4] |
王磊磊, 王璐. 电源门控技术中的电压噪声优化方案[J]. 西安电子科技大学学报, 2019,46(5):48-54.
|
|
WANG Leilei, WANG Lu. Optimization of the Voltage Noise Induced by the Power Gating Technique[J]. Journal of Xidian University, 2019,46(5):48-54.
|
[5] |
LUO S, ZHUO C, GAN H. Noise-aware DVFS Transition Sequence Optimization for Battery-powered IoT Devices[C]// Proceedings of the 2018 55th IEEE Annual Design Automation Conference. Piscataway: IEEE, 2018: a27.
|
[6] |
WANG L, WANG L, SHANG D, et al. Optimizing the Energy Efficiency of Power Supply in Heterogeneous Multicore Chips with Integrated Switched-Capacitor Converters[C]// Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition. Piscataway: IEEE, 2019: 836-841.
|
[7] |
MI X, MOGHADAM H F, SEO J S. Flying and Decoupling Capacitance Optimization for Area-constrained On-chip Switched-capacitor Voltage Regulators[C]// Proceedings of the 2017 Design, Automation and Test in Europe. Piscataway: IEEE, 2017: 1269-1272.
|
[8] |
ZHOU P, SRIDHARAN K, SAPATNEKAR S S. Congestion-aware Power Grid Optimization for 3D Circuits Using MIM and CMOS Decoupling Capacitors[C]// Proceedings of the 2009 Asia and South Pacific Design Automation Conference. Piscataway: IEEE, 2009: 179-184.
|
[9] |
LU Y, JIANG J, KI W H. Design Considerations of Distributed and Centralized Switched-capacitor Converters for Power Supply On-chip[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018,6(2):515-525.
doi: 10.1109/JESTPE.2017.2747094
|
[10] |
JAIN R, GEUSKENS B, KHELLAH M, et al. A 0.45-1V Fully Integrated Reconfigurable Switched Capacitor Step-down DC-DC Converter with High Density MIM Capacitor in 22nm Tri-gate CMOS[C]// Proceedings of the 2013 IEEE Symposium on VLSI Circuits. Piscataway: IEEE, 2013: C174-C175.
|
[11] |
XU T, LI P, YAN B. Decoupling for Power Gating: Sources of Power Noise and Design Strategies[C]// Proceedings of the 2011 IEEE Design Automation Conference. Piscataway: IEEE, 2011: 1002-1007.
|
[12] |
WANG L, ZHUO C, ZHOU P. Run-time Demand Estimation and Modulation of On-chip Decaps at System Level for Leakage Power Reduction in Multicore Chips[J]. Integration, 2018,65:322-330.
doi: 10.1016/j.vlsi.2018.01.009
|
[13] |
SU H, SAPATNEKAR S S, NASSIF S R. Optimal Decoupling Capacitor Sizing and Placement for Standard-cell Layout Designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003,22(4):428-436.
doi: 10.1109/TCAD.2003.809658
|
[14] |
BOYD S, VANDENBERGHE L. Convex Optimization[J]. IEEE Transactions on Automatic Control, 2006,51(11):1859.
doi: 10.1109/TAC.2006.884922
|
[15] |
LASDON L S, WAREN A D, JAIN A, et al. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming[J]. ACM Transactions on Mathematical Software, 1978,4(1):34-50.
doi: 10.1145/355769.355773
|
[16] |
NASSIF S R. Power Grid Analysis Benchmarks[C]// Proceedings of the 2008 IEEE Asia and South Pacific Design Automation Conference. Piscataway: IEEE, 2008: 376-381.
|
[17] |
ROBERTS D, JOHNSTONE W, SANCHEZ H, et al. Application of On-chip MIM Decoupling Capacitor for 90nm SOI Microprocessor[C]// Proceedings of the 2005 IEEE International Electron Devices Meeting. Piscataway: IEEE, 2005: 72-75.
|
[18] |
CHEN K, CHEN T, KAO R, et al. Back-end Integrable On-chip MIM Decoupling Capacitors Featuring High Capacitance with Ultra-low Leakage Current by Nitrogen-incorporated HfZrOx[J]. IEEE Transactions on Nanotechnology, 2019,18(1):532-535.
doi: 10.1109/TNANO.7729
|