[1] |
KUMAR A. Computer-vision-based Fabric Defect Detection:a Survey[J]. IEEE Transactions on Industrial Electronics, 2008,55(1):348-363.
doi: 10.1109/TIE.1930.896476
|
[2] |
NGAN H Y, PANG G K, YUNG N H. Automated Fabric Defect Detection—a Review[J]. Image and Vision Computing, 2011,29(7):442-458.
doi: 10.1016/j.imavis.2011.02.002
|
[3] |
ZHANG H, ZHANG L, LI P, et al. Yarn-dyed Fabric Defect Detection with Yolov2 based on Deep Convolution Neural Networks[C]// 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS).Piscataway:IEEE, 2018: 170-174.
|
[4] |
JING J, MA H, ZHANG H. Automatic Fabric Defect Detection Using a Deep Convolutional Neural Network[J]. Coloration Technology, 2019,135(3):213-223.
doi: 10.1111/cote.2019.135.issue-3
|
[5] |
LI Y, ZHAO W, PAN J. Deformable Patterned Fabric Defect Detection with Fisher Criterion-Based Deep Learning[J]. IEEE Transactions on Automation Science and Engineering, 2016,14(2):1256-1264.
doi: 10.1109/TASE.2016.2520955
|
[6] |
景军锋, 范晓婷, 李鹏飞, 等. 应用深度卷积神经网络的色织物缺陷检测[J]. 纺织学报, 2017,38(2):68-74.
|
|
JING Junfeng, FAN Xiaoting, LI Pengfei, et al. Yarn-dyed Fabric Defect Detection Based on Deep-Convolutional Neural Network[J]. Journal of Textile Research, 2017,38(2):68-74.
|
[7] |
李鹏飞, 闫亚娣, 张凯兵, 等. 基于AdaBoost局部二值模式特征的色织物纹理分类[J]. 西安工程大学学报, 2018,32(06):670-677.
|
|
LI Pengfei, YAN Yadi, ZHANG Kaibing, et al. A Color Fabric Classification based on AdaBoost Local Binary Pattern Feature[J]. Journal of Xi'an Polytechnic University, 2018,32(6):670-677.
|
[8] |
ZHANG H, MA J, JING J, et al. Fabric Defect Detection Using 10 Gradient Minimization and FUZZY c-means[J]. Applied Sciences, 2019,9(17):3506.
doi: 10.3390/app9173506
|
[9] |
KANG X, ZHANG E. A Universal Defect Detection Approach for Various Types of Fabrics Based on the Elo-rating Algorithm of the Integral Image[J]. Textile Research Journal, 2019,89(21):4766-4793.
doi: 10.1177/0040517519840636
|
[10] |
LI M, WAN S, DENG Z, et al. Fabric Defect Detection Based on Saliency Histogram Features[J]. Computational Intelligence, 2019,35(3):517-534.
doi: 10.1111/coin.v35.3
|
[11] |
YAPI D, MEJRI M, ALLILI M S, et al. A Learning-based Approach for Automatic Defect Detection in Textile Images[J]. IFAC-PapersOnLine, 2015,48(3):2423-2428.
doi: 10.1016/j.ifacol.2015.06.451
|
[12] |
HU G H, HUANG J F, WANG Q H, et al. Unsupervised Fabric Defet Detection Based on a Convolutional Generative Adversarial Network[J]. Textile Research Journal, 2019,90(3):247-270.
doi: 10.1177/0040517519862880
|
[13] |
张宏伟, 汤文博, 李鹏飞, 等. 基于去噪卷积自编码器的色织衬衫裁片缺陷检测[J]. 纺织高校基础科学学报, 2019,32(2):119-125.
|
|
ZHANG Hongwei, TANG Wenbo, LI Pengfei, et al. Defected Detection and Location of Yarn-Dyed Shirt Piece Based on Denoising Convolutional Autoencoder[J]. Basic Sciences Journal of Textile Universities, 2019,32(2):119-125.
|
[14] |
MEI S, WANG Y, WEN G. Automatic Fabric Defect Detection with a Multi-scale Convolutional Denoising Autoencoder Network Model[J]. Sensors, 2018,18(4):1064.
doi: 10.3390/s18041064
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical image computing and computer-assisted intervention.Heidelberg:Springer Verlay, 2015: 234-241.
|
[16] |
朱苏雅, 杜建超, 李云松, 等 .采用 U-Net 卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,46(4):35-42.
|
|
ZHU Suya, DU Jianchao, LI Yunsong, et al. Method for Bridge Crack Detection Based on the U-Net Convolutional Networks[J]. Journal of Xidian University, 2019,46(4):35-42.
|
[17] |
ZHAO X, YUAN Y, SONG M, et al. Use of Unmanned Aerial Vehicle Imagery and Deep Learning Unet to Extract Rice Lodging[J]. Sensors, 2019,19(18):3859.
doi: 10.3390/s19183859
|
[18] |
ZHOU Y, CHEN H, LI J, et al. Large-scale Station-level Crowd Flow Forecast with ST-Unet[J]. International Journal of Geo-Information, 2019,8(3):140.
|