[1] |
TANG L, GAO C Q, CHEN X, et al. Pose Detection in Complex Classroom Environment Based on Improved Faster R-CNN[J]. IET Image Processing, 2019, 13(3):451-457.
doi: 10.1049/ipr2.v13.3
|
[2] |
CHEN Y H, LI W, CHRISTOS S, et al. Domain Adaptive Faster R-CNN for Object Detection in the Wild[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:3339-3348.
|
[3] |
SAITO K, USHIKU Y, HARADA T, et al. Strong-Weak Distribution Alignment for Adaptive Object Detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:6956-6965.
|
[4] |
ZHU X G, PANG J M, YANG C Y, et al. Adapting Object Detectors via Selective Cross-Domain Alignment[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:687-696.
|
[5] |
XU C D, ZHAO X R, JIN X, et al. Exploring Categorical Regularization for Domain Adaptive Object Detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:11724-11733.
|
[6] |
WANG X D, CAI Z W, GAO D S, et al. Towards Universal Object Detection by Domain Attention[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:7289-7298.
|
[7] |
WANG T, ZHENG X P, YUAN L, et al. Few-Shot Adaptive Faster R-CNN[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE, 2019:7173-7182.
|
[8] |
HE K M, GEORGIA G, PIOTER D, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:2980-2988.
|
[9] |
REN S Q, HE K M, GIRSHICK R B, et al. Faster RCNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[10] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|
[11] |
LIN T, DOLLAR P, GIRSHICK R B, et al. Feature Pyramid Networks for Object Detection[C]// Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:936-944.
|
[12] |
FINN C, ABBEEL P, LEVINE S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[C]// Proceedings of the 34th International Conference on Machine Learning,New York:ACM, 2017:1126-1135.
|
[13] |
CHELSEA F. Learning to Learn with Gradients[D]. Berkeley:University of California, 2018.
|
[14] |
LI Z G, ZHOU F W, CHEN F, et al. Meta-SGD:Learning to Learn Quickly for Few Shot Learning(2017)[EB/OL]. [2017-9-28]. https://arxiv.org/pdf/1707.09835.pdf.
|
[15] |
HANSON S J, PRATT L Y. Comparing Biases for Minimal Network Construction with Back-Propagation[C]//Proceedings of the 1st International Conference on Neural Information Processing Systems, Cambridge: MIT Press, 1988:177-185.
|
[16] |
KINGMA D P, BA J. Adam:A Method for Stochastic Optimization(2017)[EB/OL]. [2017-1-30] https://arxiv.org/pdf/1412.6980.pdf.
|
[17] |
LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization(2017)[J/OL]. [2017-11-14] https://arxiv.org/pdf/1711.05101.pdf.
|
[18] |
许悦雷, 朱明明, 马时平, 等. 迁移学习结合难分样本挖掘的机场目标检测[J]. 西安电子科技大学学报, 2018, 45(5):190-196.
|
|
XU Yuelei, ZHU Mingming, MA Shiping, et al. Airport Object Detection Combining Transfer Learning and Hard Example Mining[J]. Journal of Xidian University, 2018, 45(5):190-196.
|
[19] |
NIE J, ANWER R M, CHOLAKKAL H, et al. Enriched Feature Guided Refinement Network for Object Detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2019:9537-9546.
|
[20] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:Optimal Speed and Accuracy of Object Detection(2020)[EB/OL]. [2020-4-23]. https://arxiv.org/pdf/2004.10934v1.pdf.
|
[21] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
doi: 10.1109/TPAMI.34
|