[1] |
LIU L, ZHOU Y Q, YUAN J H, et al. Economically Optimal MS Association for Multimedia Content Delivery in Cache-Enabled Heterogeneous Cloud Radio Access Networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3):1584-1593.
doi: 10.1109/JSAC.49
|
[2] |
LIU L, ZHOU Y Q, ZHUANG W H, et al. Tractable Coverage Analysis for Hexagonal Macrocell-Based Heterogeneous UDNs with Adaptive Interference Aware CoMP[J]. IEEE Transactions on Wireless Communications, 2019, 18(1):503-517.
doi: 10.1109/TWC.2018.2882434
|
[3] |
ZHOU Y Q, LIU H, PAN Z G, et al. Cooperative Multicast with Location Aware Distributed Mobile Relay Selection:Performance Analysis and Optimized Design[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9):8291-8302.
doi: 10.1109/TVT.2017.2682903
|
[4] |
ZHOU Y Q, LIU H, PAN Z G, et al. Energy Efficient Two-stage Cooperative Multicast Based on Device to Device Transmissions:Effect of User Density[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9):7297-7307.
doi: 10.1109/TVT.2015.2494066
|
[5] |
GONG S Q, XING C W, LIU H, et al. Hardware-Impaired RIS-Assisted mmWave Hybrid Systems:Beamforming Design and Performance Analysis[J]. IEEE Transactions on Communications, 2023, 71(4):2317-2334.
doi: 10.1109/TCOMM.2023.3241328
|
[6] |
ZHAO Z X, DU Q H, KARAGIANNIDIS G K, et al. Improved Grant-Free Access for URLLC via Multi-Tier-Driven Computing:Network-Load Learning,Prediction,and Resource Allocation[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(3):607-622.
doi: 10.1109/JSAC.2023.3234696
|
[7] |
GONG S Q, XING C W, WANG S, et al. Throughput Maximization for Intelligent Reflecting Surface Aided MIMO WPCNs with Different DL/UL Reflection Patterns[J]. IEEE Transactions on Signal Processing, 2021, 69:2706-2724.
doi: 10.1109/TSP.2021.3073813
|
[8] |
GONG S Q, XING C W,K. LAU V N, et al. Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels[J]. IEEE Transactions on Signal Processing, 2020, 68:4903-4918.
doi: 10.1109/TSP.78
|
[9] |
DU Q H, SONG H B, ZHU X J. Social-Feature Enabled Communications Among Devices Toward the Smart IoT Community[J]. IEEE Communications Magazine, 2019, 57(1):130-137.
|
[10] |
ZHANG Z Q, XIAO Y, MA Z, et al. 6G Wireless Networks:Vision,Requirements,Architecture,and Key Technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3):28-41.
|
[11] |
ZHOU Y Q, LIU L, WANG L, et al. Service-Aware 6G:An Intelligent and Open Network Based on the Convergence of Communication,Computing and Caching[J]. Digital Communications and Networks, 2020, 6(3):253-260.
doi: 10.1016/j.dcan.2020.05.003
|
[12] |
于浩洋, 尹良, 李书芳. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6):96-104.
|
|
YU Haoyang, YIN Liang, LI Shufang, et al. Recognition Algorithm for the Little Sample Radar Modulation Signal Based on the Generative Adversarial Network[J]. Journal of Xidian University, 2021, 48(6):96-104.
|
[13] |
GHASEMZADEH P, BANERJEE S, HEMPEL M, et al. A Novel Deep Learning and Polar Transformation Framework for an Adaptive Automatic Modulation Classification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11):13243-13258.
doi: 10.1109/TVT.25
|
[14] |
XU J L, SU W, ZHOU M C. Software-Defined Radio Equipped with Rapid Modulation Recognition[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4):1659-1667.
doi: 10.1109/TVT.2010.2041805
|
[15] |
XU J L, SU W, ZHOU M C. Likelihood-Ratio Approaches to Automatic Modulation Classification[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews), 2010, 41(4):455-469.
doi: 10.1109/TSMCC.2010.2076347
|
[16] |
HUANG S, LIN C S, XU W J, et al. Identification of Active Attacks in Internet of Things:Joint Model-and Data-Driven Automatic Modulation Classification Approach[J]. IEEE Internet of Things Journal, 2020, 8(3):2051-2065.
doi: 10.1109/JIoT.6488907
|
[17] |
WANG Y, GUI G, OHTSUKI T, et al. Multi-Task Learning for Generalized Automatic Modulation Classification Under Non-Gaussian Noise with Varying SNR Conditions[J]. IEEE Transactions on Wireless Communications, 2021, 20(6):3587-3596.
doi: 10.1109/TWC.2021.3052222
|
[18] |
DOBRE O A, ABDI A, BAR-NESS Y, et al. Survey of Automatic Modulation Classification Techniques:Classical Approaches and New Trends[J]. IET communications, 2007, 1(2):137-156.
doi: 10.1049/iet-com:20050176
|
[19] |
BOUTTE D, SANTHANAM B. A Hybrid ICA-SVM Approach to Continuous Phase Modulation Recognition[J]. IEEE Signal Processing Letters, 2009, 16(5):137-156.
doi: 10.1109/LSP.2008.2008948
|
[20] |
PENG S L, SUN S J, YAO Y D. A Survey of Modulation Classification Using Deep Learning:Signal Representation and Data Preprocessing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12):7020-7038.
doi: 10.1109/TNNLS.2021.3085433
|
[21] |
O’SHEA T J, HOYDIS J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]//International Conference on Engineering Applications of Neural Networks. Heidelberg:Springer, 2016:213-226.
|
[22] |
TU Y, LIN Y, HOU C B, et al. Complex-Valued Networks for Automatic Modulation Classification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9):137-156.
|
[23] |
O’SHEA T J, ROY T, CLANCY T C. Over the Air Deep Learning Based Radio Signal Classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):168-179.
doi: 10.1109/JSTSP.2018.2797022
|
[24] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep Learning Models for Wireless Signal Classification with Distributed Low-Cost Spectrum Sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3):433-445.
doi: 10.1109/TCCN.2018.2835460
|
[25] |
WEST N E, OSHEA T S. Deep Architectures for Modulation Recognition[C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway:IEEE, 2017:1-6.
|
[26] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]// Advances in Neural Information Processing Systems(NIPS). San Diego: NIPS, 2017:6000-6010.
|
[27] |
刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用. 2022, 58(6):1-16.
doi: 10.3778/j.issn.1002-8331.2106-0442
|
|
LIU Wenting, LU Xinming. Research Progress of Transformer Based on Computer Vision[J]. Computer Engineering and Applications. 2022, 58(6):1-16.
doi: 10.3778/j.issn.1002-8331.2106-0442
|
[28] |
李振星, 赵晓蕾, 刘伟承. 基于Transformer的通信信号调制识别方法[J]. 太赫兹科学与电子信息学报, 2022, 20(12):1311-1317.
|
|
LI Zhenxing, ZHAO Xiaolei, LIU Weicheng, et al. A Modulation Recognition Method of Communication Signal Based on Transformer[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(12):1311-1317.
|
[29] |
CHEN Y T, DONG B H, LIU C T, et al. Abandon Locality:Frame-Wise Embedding Aided Transformer for Automatic Modulation Recognition[J]. IEEE Communications Letters, 2023, 27(1):327-331.
doi: 10.1109/LCOMM.2022.3213523
|
[30] |
KONG W S, YANG Q H, JIAO X, et al. A Transformer-Based CTDNN Structure for Automatic Modulation Recognition[C]// 2021 7th International Conference on Computer and Communications.Piscataway:IEEE, 2021:159-163.
|
[31] |
HAMIDI-RAD S, JAIN S. MCformer:A Transformer Based Deep Neural Network for Automatic Modulation Classification[C]//2021 IEEE Global Communications Conference. Piscataway:IEEE, 2021:1-6.
|
[32] |
SU H, FAN X Y, LIU H J. Robust and Efficient Modulation Recognition with Pyramid Signal Transformer[C]//2022 IEEE Global Communications Conference. Piscataway:IEEE, 2022:1868-1874.
|
[33] |
黄思嘉, 杜庆治, 龙华, 等. 幅度与相位分步识别的QAM调制模式识别算法[J]. 通信技术, 2020, 53(2):261-267.
|
|
HUANG Sijia, DU Qingzhi, LONG Hua, et al. QAM Modulation Pattern Recognition Algorithm by Step-by-Step Identification of Amplitude and Phase[J]. Communications technology, 2020, 53(2):261-267.
|
[34] |
WANG C, WANG J, ZHANG X D. Automatic Radar Waveform Recognition Based on Time-Frequency Analysis and Convolutional Neural Network[C]//2017 IEEE nternational Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE, 2017:2437-2441.
|
[35] |
ZHANG H, ZU K K, LU J, et al. EPSANet:An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network (2021)[J/OL].[2021-05-30]. https://arxiv.org/abs/2105.14447.
|
[36] |
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141.
|