[1] |
ZAN F D, GUARNIERI A M. TOPSAR:Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2352-2360.
doi: 10.1109/TGRS.2006.873853
|
[2] |
PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(2):770-780.
|
[3] |
META A, MITTERMAYER J, PRATS P, et al. TOPS Imaging with TerraSAR-X:Mode Design and Performance Analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(2):759-769.
|
[4] |
RODRIGUEZ-CASSOLA M, PRATS-IRAOLA P, ZAN F D, et al. Doppler-Related Distortions in TOPS SAR Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(1):25-35.
|
[5] |
DENG B, LI X, WANG H, et al. Fast Raw-Signal Simulation of Extended Scenes for Missile-Borne SAR With Constant Acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(1):44-48.
doi: 10.1109/LGRS.2010.2050675
|
[6] |
CHEN S, ZHAO H, ZHANG S, et al. An Extended Nonlinear Chirp Scaling Algorithm for Missile Borne SAR Imaging[J]. Signal Processing, 2014, 99:58-68.
doi: 10.1016/j.sigpro.2013.12.017
|
[7] |
CHENG H, LIU Z, TENG L. An Improved CS Algorithm Based on the Curved Trajectory in Geosynchronous SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(3):795-808.
|
[8] |
SUN G C, XING M, WANG Y, et al. A 2-D Space-Variant Chirp Scaling Algorithm Based on the RCM Equalization and Subband Synthesis to Process Geosynchronous SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4868-4880.
doi: 10.1109/TGRS.2013.2285721
|
[9] |
CHEN J, SUN G C, WANG Y, et al. A TSVD-NCS Algorithm in Range-Doppler Domain for Geosynchronous Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1631-1635.
doi: 10.1109/LGRS.2016.2599224
|
[10] |
ZHANG S X, XING M D, XIA X G, et al. Focus Improvement of High-Squint SAR Based on Azimuth Dependence of Quadratic Range Cell Migration Correction[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(1):150-154.
|
[11] |
XIONG T, XING M, XIA X G, et al. New Applications of Omega-K Algorithm for SAR Data Processing Using Effective Wavelength at High Squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):3156-3169.
doi: 10.1109/TGRS.2012.2213342
|
[12] |
XING M, WU Y, ZHANG Y D, et al. Azimuth Resampling Processing for Highly Squinted Synthetic Aperture Radar Imaging With Several Modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4339-4352.
doi: 10.1109/TGRS.2013.2281454
|
[13] |
黄平平, 邓云凯, 徐伟, 等. 基于频域合成方法的多发多收SAR技术研究[J]. 电子与信息学报, 2011, 33(2):401-406.
|
|
HUANG Pingping, DENG Yunkai, XU Wei, et al. Multiple SAR Technology Research Based on Frequency Domain Synthesis Method[ J ]. Electronic and informatics, 2011, 33(2) :401-406.
|
[14] |
邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6):732-757.
|
|
XING Mengdao, LIN Hao, CHEN Jianlai, et al. A Review of Imaging Algorithms in Multi-Platform-Borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6):732-757.
|
[15] |
DESAI M, JENKINS W. Convolution Backprojection Image Reconstruction for Spotlight Mode Synthetic Aperture Radar. IEEE Transactions on Image Processing, 1992, 1(4):505-517.
pmid: 18296183
|
[16] |
ULANDER L, HELLSTEN H, STENSTROM G. Synthetic-Aperture Radar Processing Using Fast Factorized Back-Projection[J]. IEEE Transactions on Aerospace & Electronic Systems, 2003, 39(3):760-776.
|
[17] |
CHEN X, SUN G C, XING M, et al. Ground Cartesian Back-Projection Algorithm for High Squint Diving TOPS SAR Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5812-5827.
doi: 10.1109/TGRS.2020.3011589
|
[18] |
BAO M, ZHOU S, XING M. Processing Missile-Borne SAR Data by Using Cartesian Factorized Back Projection Algorithm Integrated with Data-Driven Motion Compensation. Remote Sensing, 2021, 13(8):1462.
doi: 10.3390/rs13081462
|
[19] |
YANG J, HUANG X, JIN T, et al. An Interpolated Phase Adjustment by Contrast Enhancement Algorithm for SAR[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(2):211-215.
|
[20] |
ZENG L, LIANG Y, XING M, et al. A Novel Motion Compensation Approach for Airborne Spotlight SAR of High-Resolution and High-Squint Mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):429-433.
|
[21] |
REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended Wavenumber-Domain Synthetic Aperture Radar Focusing with Integrated Motion Compensation[J]. IEE Proceedings-Radar,Sonar and Navigation, 2006, 153(3):301-310.
doi: 10.1049/ip-rsn:20045087
|
[22] |
ZHU D Y, JIANG R, MAO X H, et al. Multi-Subaperture PGA for SAR Autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1):468-487.
doi: 10.1109/TAES.2013.6404115
|
[23] |
WAHLD E, EICHEL P H, GHIGLIA D C, et al. Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3):827-835.
doi: 10.1109/7.303752
|
[24] |
ZHANG L, WANG G Y, QIAO Z J, et al. Azimuth Motion Compensation with Improved Subaperture Algorithm for Airborne SAR Imaging[J]. IEEE Journal of Selected of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1):184-193.
|
[25] |
ZHANG L, LI H L, QIAO Z J, et al. Integrating Autofocus Techniques with Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging[J] IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1394-1398.
doi: 10.1109/LGRS.2013.2258886
|
[26] |
DONG Q, SUN G, YANG Z, et al. Cartesian Factorized Backprojection Algorithm for High-Resolution Spotlight SAR Imaging[J]. IEEE Sensors Journal, 2018, 18(3):1160-1168.
doi: 10.1109/JSEN.2017.2780164
|
[27] |
YANG Z M, XING M D, ZHANG L, et al. A Coordinate-Transform Based FFBP Algorithm for High-Resolution Spotlight SAR Imaging[J] Science China Information Sciences, 2015, 58(2):1-11.
|