[1]Partridge M, Calyo R. Fast Dimensionality Reduction and Simple PCA[J]. Intelligent Data Analysis, 1997, 2(3): 292-298.
[2]Hyvrinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128.
[3]Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000(290): 2319-2323.
[4]Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000(290): 2323-2326.
[5]Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
[6]Zhang Zhenyue, Zha Hongyuan. Priciple Manifolds and Nonlinear Dimensionality Reduction Via Local Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005, 26(1): 313-338.
[7]肖刚, 刘三阳, 尹小艳. 微分流形上的最优化算法[J]. 西安电子科技大学学报, 2007, 34(3): 472-475.
Xiao Gang, Liu Sanyang, Yin Xiaoyan. Optimization Algorithm on Differentiable Manifolds[J]. Journal of Xidian University, 2007, 34(3): 472-475.
[8]马瑞, 王家廞, 宋亦旭. 基于局部线性嵌入非线性降维的多流形学习[J]. 清华大学学报, 2008, 48(4): 582-585.
Ma Rui, Wang Jiaxin, Song Yixu. Multi-manifold Learning Using Locally Linear Embedding(LLE) Nonlinear Dimensionality Reduction[J]. Journal of Tsinghua University, 2008, 48(4): 582-585.
[9]文贵华, 江丽君, 文军. 邻域参数动态变化的局部线性嵌入[J]. 软件学报, 2008, 19(7): 1666-1672.
Wen Guihua, Jiang Lijun, Wen Jun. Dynamically Determining Neighborhood Parameter for Locally Linear Embedding[J]. Journal of Software, 2008,19(7): 1666-1672.
[10]Nadler B, Lafon S, Coifman R R, et al. Diffusion Maps, Spectral Clustering and the Reaction Coordinate of Dynamical Systems[J]. Applied and Computation Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets, 2006, 21(1): 113-127.
[11]Coifman R R, Kevrekidis I G, Lafon S, et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems[J]. Multiscale Model and Simulation, 2008, 7(2): 842-864.
[12]Maggioni M, Mhaskar H. Diffusion Polynomial Frames on Metric Measure Spaces[J]. Applied and Computation Harmonic Analysis, 2008, 24(3): 329-353.
[13]Jones P W, Maggioni M, Schul R. Manifold Parametrizations by Eigenfunctions of the Laplacian and Heat Kernels[J]. Proceedings of the National Academy of Sciences of USA, 2008, 105(6): 1803-1808. |