[1] Yao Y Y, Lingras P J. Interpretations of Belief Functions in the Theory of Rough Sets[J]. Information Sciences, 1998,104 (1-2): 81-106.
[2] 刘大有,李岳峰. 广义证据推理的解释[J]. 计算机学报, 1997, 20(2): 158-164.
Liu Dayou, Li Yuefeng. The Generalized Evidence Reasoning Explanation[J].Chinese Journa of Computer, 1997, 20(2): 158-164.
[3] 戴冠中,潘泉,张山鹰,等. 证据推理及其存在的问题[J]. 控制理论与应用,1999, 16(4):465-469.
Dai Guanzhong, Pan Quan, Zhang Shanying, et al. The Evidence Reasoning and Its Existing Problems[J].Control Theory and Applications, 1999, 16(4):465-469.
[4] Voorbsaak F. A Computationally Efficient Approximation of Dempster-Shafer Theory[J]. Int J Man-machine Studies, 1989, 30(2):525-536.
[5] Tessem B. Approximation for Efficient Computation the Theory of Evidence[J].Artificial Intelligence, 1993, 61(2):315-329.
[6] Lowrance J D, Garvey T D, Strat T M. A Framework for Evidential-reasoning Systems[C]//Proceedings of the 5th National Conference of American Association for Artificial Intelligence: Vol 2. Philadelphia: AAAI Press,1986:896-903.
[7] Bauer M. Approximation Algorithms and Decision Making in the Dempster-Shafer Theory of Evidemce—an Empirical Study[J]. Int J Approximation Reasoning, 1997, 17(2-3):217-237.
[8] Dubois D, Prude H. Consonant Approximation of Belief Function[J]. Int J Approx Reasoning 1990,22(4): 418-449.
[9] Harmanec D. Faithful Approximation of Belief Function[J]. Uncertainty in Artificial Intelligence, 2009, 16(3):63-77.
[10] Munakata T. Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigms[M]. Princeton: Spring-Verlag, 2008:195-245.
[11] Qiu Y, Liu Y. Notes on the Convergence of Genetic of Genetic Algorithms[C]//Proc of the 3rd World Congress on Intelligent Control and Automation:Vol 2. Hefei: IEEE Computer Society, 2000: 508-511. |