[1] Ivanov R. Real-time GPS Track Simplification Algorithm for Outdoor Navigation of Visually Impaired[J]. Journal of Network and Computer Applications, 2012, 35(5): 1559-1567.
[2] Park W, Yu K. Hybrid Line Simplification for Cartographic Generalization[J]. Pattern Recognition Letters, 2011, 32(9): 1267-1273.
[3] McMaster R B. The Geometric Properties of Numerical Generalization[J]. Geographical Analysis, 1987, 19(4): 330-346.
[4] Douglas D, Peucker T. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature[J]. The Canadian Cartographer, 1973, 10(2): 112-122.
[5] 黄娟, 程耀东. 多分辨率小波分析在GIS线状要素简化中的应用[J]. 唐山学院学报, 2010, 23(7): 13-16.
Huang Juan, Cheng Yaodong. Application of Multi-resolution Wavelet Analysis in GIS Linear Element Simplification[J]. Journal of Tangshan College, 2010, 23(7): 13-16.
[6] 任海艳, 陈飞翔. 自适应遗传算法的改进及在曲线化简中的应用[J]. 计算机工程与应用, 2012, 48(11): 152-155.
Ren Haiyan, Chen Feixiang. Improvement of Adaptive Genetic Algorithms and Application in Line Simplification[J]. Computer Engineering and Applications, 2012, 48(11): 152-155.
[7] 武芳, 邓红艳. 基于遗传算法的线要素自动化简模型[J]. 测绘学报, 2003, 32(4): 349-355.
Wu Fang, Deng Hongyan. Using Genetic Algorithms for Solving Problems in Automated Line Simplification[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(4): 349-355.
[8] Zhao Z, Saalfeld A. Linear-time Sleeve-fitting Polyline Simplification Algorithms[DB/OL]. [2012-12-30]. http://mapcontext.com/autocarto/proceedings/auto-carto-131pdf/linear-time-sleeve-fitting-pdyline-simplification-algorithm.pdf.
[9] Reumann K, Witkam A P M. Optimizing Curve Segmentation in Computer Graphics[C]//Proceedings of International Computing Symposium. Amsterdam: North-Holland, 1974: 467-472.
[10] Opheim H. Fast Data Reduction of a Digitized Curve[J]. Geo-Processing, 1982, 2: 33-40.
[11] Lang T. Rules for Robot Draughtsmen[J]. Geographical Magazine, 1969, 42(1): 50-51. |