[1] Dollar P, Wojek C, Schiele B, et al. Pedestrian Detection: an Evaluation of the State of the Art [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
[2] Shantaiya S, Verma K, Mehta K. A Survey on Approaches of Object Detection [J]. International Journal of Computer Applications, 2013, 65(18): 14-20.
[3] Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition: 1. Piscataway: IEEE, 2005: 886-893.
[4] 鲁珂, 丁正明, 赵继东, 等. 一种基于相关反馈的视频人脸算法[J]. 西安电子科技大学学报, 2012, 39(4): 154-160.
Lu Ke, Ding Zhengming, Zhao Jidong, et al. Novel Face Recognition Relevance Feedback Algorithm for Video [J]. Journal of Xidian University, 2012, 39(4): 154-160.
[5] 杨曦, 李洁, 韩冰, 等. 一种分层小波模型下的极光图像分类算法 [J]. 西安电子科技大学学报, 2013, 40(2): 18-24.
Yang Xi, Li Jie, Han Bing, et al. Wavelet Hierarchical Model for Aurora Images Classification [J]. Journal of Xidian University, 2013, 40(2): 18-24.
[6] 李远征, 卢朝阳, 李静. 一种基于多特征融合的视频目标跟踪方法 [J]. 西安电子科技大学学报, 2012, 39(4): 1-6.
Li Yuanzheng, Lu Zhaoyang, Li Jing. Rubust Video Object Tracking Algorithm Based on Multi-feature Fusion [J]. Journal of Xidian University, 2012, 39(4): 1-6.
[7] Walk S, Majer N, Schindler K, et al. New Features and Insights for Pedestrian Detection [C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 1030-1037.
[8] Park K Y, Hwang S Y. An Improved Haar-like Feature for Efficient Object Detection [J]. Pattern Recognition Letters, 2014, 42: 148-153.
[9] Wang X, Yang M, Zhu S, et al. Regionlets for Generic Object Detection [C]//IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 17-24.
[10] Paisitkriangkrai S, Shen C. Efficient Pedestrian Detection by Directly Optimize the Partial Area under the ROC Curve [C]//IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 1057-1064.
[11] 杜喆, 刘三阳. 最小二乘支持向量机变型算法研究 [J]. 西安电子科技大学学报, 2009, 36(2): 331-337.
Du Zhe, Liu Sanyang. Research on Variations of Least Square Support Vector Machine [J]. Journal of Xidian University, 2009, 36(2): 331-337.
[12] Jones M, Snow D. Pedestrian Detection Using Boosted Features over Many Frames [C]//19th International Conference on Pattern Recognition. Piscataway: IEEE, 2008: 1-4.
[13] Park D, Zitnick C L, Ramanan D, et al. Exploring Weak Stabilization for Motion Feature Extraction [C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2882-2889.
[14] Enzweiler M, Eigenstetter A. Multi-cue Pedestrian Classification with Partial Occlusion Handling [C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 990-997.
[15] Dollar P, Wojek C, Schiele B, et al. Pedestrian Detection: a Benchmark [C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 304-311.
[16] CBCL at MIT. MIT CBCL Car Database #1 [DB/OL]. [2014-02-11]. http://cbcl.mit.edu/software-datasets/CarData.html.
[17] Carbonetto P, Dorko G. INRIA Car Data Set [DB/OL]. [2014-02-11]. http://lear.inrialpes.fr/data.
[18] Caltech. Caltech Car Database [DB/OL]. [2014-02-11]. http://www.vision.caltech.edu/html-files/archive.html.
[19] Ali S, Shah M. A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis [C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-6.
[20] CAVIAR Project. CAVIAR Test Case Scenarios [DB/OL]. [2014-02-11] http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. |