[1] Tighe J, Lazebnik S. Superparsing: Scalable Nonparametric Image Parsing with Superpixels[J]. International Journal of Computer Vision, 2013, 101(2): 329-349.
[2] 王卫卫, 杨塨鹏, 吕畅, 等. 一种新的水平集图像分割模型[J]. 西安电子科技大学学报, 2013, 40(6): 39-45.
Wang Weiwei, Yang Gongpeng, Lü Chang, et al. New Image Segmentation Model Based on the Level Set Method [J]. Journal of Xidian University, 2013, 40(6): 39-45.
[3] Hoiem D, Efros A A, Hebert M. Recovering Surface Layout from an Image[J]. International Journal of Computer Vision, 2007, 75(1): 151-172.
[4] Ladicky L', Russell C, Kohli P, et al. Inference Methods for CRFs with Co-occurrence Statistics[J]. International Journal of Computer Vision, 2013, 103(2): 213-225.
[5] Shotton J, Johnson M, Cipolla R. Semantic Texton Forests for Image Categorization and Segmentation[C]//Proceedings of 26th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[6] He X, Zemel R S, Carreira-Perpindn M A. Multiscale Conditional Random Fields for Image Labeling[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2004: Ⅱ-695-702.
[7] Gould S, Fulton R, Koller D. Decomposing a Scene into Geometric and Semantically Consistent Regions[C]//Proceedings of the IEEE Conference on Computer Vision. Piscataway: IEEE, 2009: 1-8.
[8] Galleguillos C, McFee B, Belongie S, et al. Multi-class Object Localization by Combining Local Contextual Interactions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 113-120.
[9] Socher R, Lin C C, Manning C D, et al. Parsing Natural Scenes and Natural Language with Recursive Neural Networks[C]//Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 129-136.
[10] Felzenszwalb P F, Huttenlocher D P. Efficient Graph-based Image Segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167-181.
[11] Tighe J, Lazebnik S. Finding Things: Image Parsing with Regions and Per-exemplar Detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013: 3001-3008.
[12] Geiger A, Lauer M, Wojek C, et al. 3D Traffic Scene Understanding from Movable Platforms[J]. Pattern Analysis and Machine Intelligence, 2014, 36(5): 1012-1025.
[13] Zhao P, Fang T, Xiao J X, et al. Rectilinear Parsing of Architecture in Urban Environment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 342-349.
[14] Lowe D G. Distinctive Image Features from Scale-invariant Key Points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[15] Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2005: 886-893.
[16] Moosmann F, Triggs B, Jurie F. Fast Discriminative Visual Codebooks Using Randomized Clustering Forests[C]//Advances in Neural Information Processing Systems. Canada: NIPS, 2007: 985-992.
[17] Wang C, Komodakis N, Paragios N. Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: a Survey[J]. Computer Vision and Image Understanding, 2013, 117(11): 1610-1627.
[18] Gridchyn I, Kolmogorov V. Potts Model, Parametric Max-flow and k-sub-modular Functions[C]//Proceedings of the IEEE Conference on Computer Vision. Piscataway: IEEE, 2013: 2320-2327.
[19] Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239. |