[1] LU Q, LI W, TIAN J, et al. Effects on Hypothalamus when CPG is Fed Back to Basal Ganglia Based on KIV Model [J]. Cognitive Neurodynamics, 2015, 9(1): 85-92.
[2] MEES A, AIHARA K, ADACHI M, et al. Deterministic Prediction and Chaos in Squid Axon Response[J]. Physics Letters A, 1992, 169(1): 41-45.
[3] AIHARA K, TAKABE T, TOYODA M. Chaotic Neural Networks[J]. Physics Letters A, 1990, 144(6): 333-340.
[4] MATSUOKA K. Sustained Oscillations Generated by Mutually Inhibiting Neurons with Adaptation[J]. Biological Cybernetics, 1985, 52(6): 367-376.
[5] ZHANG J Q, GAO F, HAN X L, et al. Trot Gait Design and CPG Method for a Quadruped Robot[J]. Journal of Bionic Engineering, 2014, 11(1): 18-25.
[6] LU Q, TIAN J. Research on Walking Gait of Biped Robot Based on a Modified CPG Model[J]. Mathematical Problems in Engineering, 2015, 2015: 793208.
[7] ROSTRO-GONZALEZ H, CERNA-GARCIA P A, TREJO-CABALLERO G, et al. A CPG System Based on Spiking Neurons for Hexapod Robot Locomotion[J]. Neurocomputing, 2015, 170: 47-54.
[8] SFAKIOTAKIS M, FASOULAS J, KAVOUSSANOS M M, et al. Experimental Investigation and Propulsion Control for a Bio-inspired Robotic Undulatory Fin[J]. Robotica, 2015, 33(5): 1062-1084.
[9] WILLIAMS T L, MCMILLEN T. Strategies for Swimming: Explorations of the Behaviour of a Neuro-musculo-mechanical Model of the Lamprey[J]. Biology Open, 2015, 4(3): 253-258.
[10] MATSUO T, ISHII K. The Adjustment System of Phase Difference Using Neural Oscillator Network for a Snake-like Robot[C]//Proceedings of the SICE Annual Conference. Tokyo: SICE, 2012: 502-507.
[11] HASANZADEH S, AKBARZADEH A. Development of a New Spinning Gait for a Planar Snake Robot Using Central Pattern Generators[J]. Intelligent Service Robotics, 2013, 6(2): 109-120.
[12] BUSCHMANN T, EWALD A, TWICKEL A V, et al. Controlling Legs for Locomotion-insights from Robotics and Neurobiology[J]. Bioinspiration & Biomimetics, 2015, 10: 041001.
[13] TAGA G. A Model of the Neuro-musculo-skeletal System for Human Locomotion[J]. Biological Cybernetics, 1995, 73(2): 97-111.
[14] GISZTER S F. Motor Primitives—New Data and Future Questions[J]. Current Opinion in Neurobiology, 2015, 33: 156-165.
[15] TAGA G. A Model of the Neuro-musculo-skeletal System for Anticipatory Adjustment of Human Locomotion During Obstacle Avoidance[J]. Biological Cybernetics, 1998, 78(1): 9-17.
[16] KNIKOU M. Neural Control of Locomotion and Training-induced Plasticity After Spinal and Cerebral Lesions[J]. Clinical Neurophysiology, 2010, 121(10): 1655-1668.
[17] MATSUOKA K. Analysis of a Neural Oscillator[J]. Biological Cybernetics, 2011, 104(4/5): 297-304. |