[1] DONOHO D L. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2] DEHGHAN H, DANSEREAU R M, CHAN A D C. Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-channel Convolutive Source Separation [J]. IEEE Transactions on Signal Processing, 2015, 63(21):5665-5676.
[3] PUDLEWSKI S, PRASANNA A, MELODIA T. Compressed-sensing-enabled Video Streaming for Wireless Multimedia Sensor Networks [J]. IEEE Transactions on Mobile Computing, 2012, 11(6):1060-1072.
[4] 党骙, 马林华, 田雨, 等. m序列压缩感知测量矩阵构造[J]. 西安电子科技大学学报, 2015, 42(2): 186-192.
DANG Kui, MA Linhua, TIAN Yu, et al. Construction of the Compressive Sensing Measurement Matrix Based on m Sequences [J]. Journal of Xidian University, 2015, 42(2): 186-192.
[5] DO T T, GAN L, NGUYEN N H, et al. Fast and Efficient Compressive Sensing Using Structurally Random Matrices [J]. IEEE Transactions on Signal Processing, 2012, 60(1): 139-154.
[6] 王学伟, 崔广伟, 王琳, 等. 基于平衡Gold序列的压缩感知测量矩阵的构造 [J]. 仪器仪表学报, 2014, 35(1): 97-102.
WANG Xuewei, CUI Guangwei, WANG Lin, et al. Construction of Measurement Matrix in Compressed Sensing Based on Balanced Gold Sequence [J]. Chinese Journal of Scientific Instrument, 2014, 35(1): 97-102.
[7] 李珅, 马彩文, 李艳, 等. 压缩感知重构算法综述[J]. 红外与激光工程, 2013, 42(S1): 225-232.
LI Shen, MA Caiwen, LI Yan, et al. Survey on Reconstruction Algorithm Based on Compressive Sensing[J]. Infrared & Laser Engineering, 2013, 42(S1): 225-232.
[8] CANDES E, ROMBERG J. Sparsity and Incoherence in Compressive Sampling [J]. Inverse Problems, 2007, 23(3): 969-985.
[9] HOEFFDING W. A Combinatorial Central Limit Theorem [J]. Annals of Mathematical Statistics, 1951, 22(4): 558-566.
[10] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. |