[1] GALLAGER R G. Low-density Parity-check Codes [J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
[2] MACKAY D J C, NEAL R M. Near Shannon Limit Performance of Low Density Parity check Codes [J]. Electronics Letters, 1996, 32(18): 1645-1646.
[3] WANG R, LI Y, ZHAO H, et al. Construction of Girth-eight Quasi-cyclic Low-density Parity-check Codes with Low Encoding Complexity [J]. IET Communications, 2016, 10(2): 148-153.
[4] BABAR Z, BOTSINIS P, ALANIS D, et al. Construction of Quantum LDPC Codes from Classical Row-circulant QC-LDPCs[J]. IEEE Communications Letters, 2016, 20(1): 9-12.
[5] LEE J H, SUNWOO M H. Low-complexity First-two-minimum-values Generator for Bit-serial LDPC Decoding [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(5):483-487.
[6] OLMOS P M, MITCHELL D G M, COSTELLO D J. Analyzing the Finite-length Performance of Generalized LDPC Codes [C]//Preceedings of the IEEE International Symposium on Information Theory. Piscataway: IEEE, 2015: 2083-2687.
[7] FANG Y, BI G, GUAN Y L, et al. A Survey on Protograph LDPC Codes and Their Applications [J]. IEEE Communications Surveys and Tutorials, 2015, 17(4): 1989-2016.
[8] DIAO Q, TAI Y Y, LIN S, et al. LDPC Codes on Partial Geometries: Construction, Trapping Set Structure, and Puncturing [J]. IEEE Transactions on Information Theory, 2013, 59(12): 7898-7914.
[9] LAN L, TAI Y Y, LIN S, et al. New Constructions of Quasi-cyclic LDPC Codes Based on Special Classes of BIBDs for the AWGN and Binary Erasure Channels [J]. IEEE Transactions on Communications, 2008, 56(1):39-48.
[10] SONG S, ZHOU B, LIN S, et al. A Unified Approach to the Construction of Binary and Nonbinary Quasi-cyclic LDPC Codes Based on Finite Fields [J]. IEEE Transactions on Communications, 2009, 57(1), 84-93.
[11] LI J, LIU K, LIN S, et al. A Matrix-theoretic Approach to the Construction of Non-binary Quasi-cyclic LDPC Codes [J]. IEEE Transactions on Communications, 2015, 63(4): 1057-1068.
[12] VASIC B, MILENKOVIC O. Combinatorial Constructions of Low-density Parity-check Codes for Iterative Decoding [J]. IEEE Transactions on Information Theory, 2004, 50(6): 1156-1176.
[13] CHEN C, BAI B M, WANG X M. Construction of Nonbinary Quasi-cyclic LDPC Cycle Codes Based on Singer Perfect Difference Set [J]. IEEE Communications Letters, 2010, 14(2): 181-183.
[14] RYAN W E, LIN S. Channel Codes: Classical and Modern [M]. Cambridge: Cambridge University Press, 2009: 487-490.
[15] XU H Z, FENG D, SUN C, et al. Construction of LDPC Codes Based on Resolvable Group Divisible Designs [C]//Preceedings of the 2015 International Workshop on High Mobility Wireless Communications. Piscataway: IEEE, 2015: 111-115.
[16] 沈灏. 组合设计理论 [M]. 2版. 上海: 上海交通大学出版社, 2008: 16-18.
[17] SUN X W, GE G N. Resolvable Group Divisible Designs with Block Size Four and General Index [J]. Discrete Mathematics, 2009, 309(10): 2982-2989.
[18] MACKAY D. MacKay 's Homepage [DB/OL]. [2015-10-26]. http://www.inference.phy.cam.ac.uk/mackay/CodesFiles.html.
[19] XU J, CHEN L, DJURDJEVIC I, et al. Construction of Regular and Irregular LDPC Codes: Geometry Decomposition and Masking [J]. IEEE Transactions on Information Theory, 2007, 53(1): 121-134. |