[1] LIU Y, NIU J B, WANG H J, et al. Strained Germanium Quantum Well PMOSFETs on SOI with Mobility Enhancement by External Uniaxial Stress[J]. Nanoscale Research Letters, 2017, 12(1): 120-124.
[2] LEE C F, HE R Y, CHEN K T, et al. Strain Engineering for Electron Mobility Enhancement of Strained Ge NMOSFET with SiGe Alloy Source/Drain Stressors[J]. Microelectronic Engineering, 2015, 138(C): 12-16.
[3] LIU J S, CLAVEL M B, HUDAIT M K. An Energy-efficient Tensile-strained Ge/InGaAs TFET 7T SRAM Cell Architecture for Ultralow-voltage Applications[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2193-2200.
[4] MA J L, FU Z F, LIU P, et al. Hole Mobility Enhancement in Uniaxial Stressed Ge Dependence on Stress and Transport Direction[J]. Science China: Physics, Mechanics and Astronomy, 2014, 57(10): 1860-1865.
[5] 白敏, 宣荣喜, 宋建军, 等. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型[J]. 物理学报, 2015, 64(3): 038501-038506.
BAI Min, XUAN Rongxi, SONG Jianjun, et al. Hole Scattering and Mobility in Compressively Strained Ge/(001)Si1-xGex [J]. Acta Physica Sinica, 2015, 64(3): 038501-038506.
[6] KURDI M E, FISHMAN G, SAUVAGE S, et al. Band Structure and Optical Gain of Tensile-strained Germanium Based on a 30 Band k·p Formalism[J]. Journal of Applied Physics, 2010, 107(1): 013710-013717.
[7] TANI K, SAITO S, ODA K, et al. Room-temperature Direct Band-gap Electroluminescence from Germanium(111)-Fin Light-emitting Diodes[J]. Japanese Journal of Applied Physics, 2017, 56(3): 032102.
[8] DAI X Y, SHAO C F, HAO Y. Uniaxially Strained Silicon on Insulator with Wafer Level Prepared by Mechanical Bending and Annealing[J]. Applied Physics Express, 2013, 6(8): 081302.
[9] SUN Y, THOMPSON S E, NISHIDA T. Strain Effect in Semiconductors:Theory and Device Applications[M]. New York: Springer, 2010: 118.
[10] CARDONA M, PQLLAK F H. Energy-band Structure of Germanium and Silicon: the k·p Method[J]. Physical Review, 1966, 142(2): 530-543.
[11] RICHARD S, ANIEL F, FISHMAN G. Energy-band Structure of Ge, Si, and GaAs: a Thirty-band k·p Method[J]. Physical Review B, 2004, 70(23): 18976-18984.
[12] RIDEAU D, FERAILLE M, CIAMPOLINI L, et al. Strained Si, Ge, and Si1-xGex Alloys Modeled with a First-principles-optimized Full-zone k·p Method[J]. Physical Review B, 2006, 74(19): 195208-195227.
[13] 戴显英, 李金龙, 郝跃. 应变锗的导带结构计算与分析[J]. 西安电子科技大学学报, 2014, 41(2): 120-124.
DAI Xianying, LI Jinlong, HAO Yue. Calculation and Analysis of the Conduction Band-structure of Strained Germanium[J]. Journal of Xidian University, 2014, 41(2): 120-124.
[14] LIU L, ZHANG M, HU L, et al. Effect of Tensile Strain on the Electronic Structure of Ge: a First-principles Calculation[J]. Journal of Applied Physics, 2014, 116(11): 113105.
[15] SUKHDEO D S, NAM D, KANG J H, et al. Direct Bandgap Germanium-on-Silicon Inferred from 5.7% 100 Uniaxial Tensile Strain[J]. Photonics Research, 2014, 2(3): A8-A13.
[16] MADELUNG O, RSSLER U, SCHULZ M. Semiconductors·Group Ⅳ Elements, Ⅳ-Ⅳ and Ⅲ-Ⅴ Compounds. Part b - Electronic, Transport, Optical and Other Properties[M]. Berlin: Springer, 2002: 2854.
[17] KIM J, FISCHETTI M V. Electronic Band Structure Calculations for Biaxially Strained Si, Ge, and Ⅲ-Ⅴ Semiconductors[J]. Journal of Applied Physics, 2010, 108(1): 013710.
[18] NIQUET Y M, RIDEAU D, TAVERNIER C, et al. Onsite Matrix Elements of the Tight-binding Hamiltonian of a Strained Crystal: Application to Silicon, Germanium, and Their Alloys[J]. Physical Review B, 2009, 79(24): 245201-245213.
[19] SONG J J, CHAO Y, ZHANG H M, et al. Longitudinal, Transverse, Density-of-states, and Conductivity Masses of Electrons in (001), (101) and (111) Biaxially-strained-Si and Strained-Si1-xGex[J]. Science China: Physics, Mechanics and Astronomy, 2012, 55(11): 2033-2037. |