[1] 李良群, 姬红兵, 罗军辉. 基于迭代扩展卡尔曼的粒子滤波新方法[J]. 西安电子科技大学学报, 2007, 34(2): 233-238.
Li Liangqun, Ji Hongbing, Luo Junhui. Iterated Extended Kalman Particle Filtering [J]. Journal of Xidian University, 2007, 34(2): 233-238.
[2] Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
[3] Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002(50): 174-188.
[4] Haupt G T, Kasdin J. Optimal Recursive Iterative Algorithmfor Discrete Nonlinear Least-squares Estimation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 643-649.
[5] Pulford G W. Taxonomy of Multiple Target Tracking Methods[J]. IEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 291-304.
[6] Mahler R. A Theoretical Foundation for the Stein-Winter Probability Hypothesis Density (PHD) Multi-target Tracking Approach[ED/OL]. [2009-03-03]. http://www.dtic.mil/cgi-bin/GetTRDoc?Locution=U2&doc=GetTRDoc.pdf&AD=ADA400161.
[7] Mahler R P S. Multitarget Bayes Filtering Via First-order Multitarget Moments[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
[8] Sidenbladh H. Multi-target Particle Filtering for the Probability Hypothesis Density[C]//IEEE Proceedings of the Sixth International Conference of Information Fusion: Vol 2. Cairns: IEEE, 2003: 800-806.
[9] Vo B N, Pasha A, Tuan H D. A Gaussian Mixture PHD Filter for Nonlinear Jump Markov Models[C]//Proceedings of the 45th IEEE Conference on Decision & Control. San Diego: IEEE, 2006: 3162-3167.
[10] Vo B, Ma W K. The Gaussian Mixture Probability Hypothesis Density Filter[J]. IEEE Trans on Signal Processing, 2006, 54(11): 4091-4104. |