[1] Pei Jiajia. Face Recognition Based on the Subspace [D]. Hangzhou: Zhejiang University of Technology, 2009.
[2] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000, 290(5500): 2323-2326.
[3] 陶晓燕, 姬红兵, 景志宏. 一种用于人脸识别的正交邻域保护嵌入算法[J]. 西安电子科技大学学报, 2008, 35(3): 439-442.
Tao Xiaoyan, Ji Hongbing, Jing Zhihong. Orthogonal Neighborhood Preserving Embedding Algorithm for Face Recognition[J]. Journal of Xidian University, 2008, 35(3): 439-442.
[4] He X F, Niyogi P. Locality Preserving Projections[C]//Neural Information Processing Systems. Vancouver: MIT Press, 2004: 153-160.
[5] He X F, Cai D, Yan S C, et al. Neighborhood Preserving Embedding [C]//Proc of the 10th IEEE International Conference on Computer Vision. Washington: IEEE Computer Society Press, 2005: 1208-1213.
[6] Song Fengxi, Cheng Keyang, Liu Jingyu, et al. Maximum Scatter Difference, Large Margin Linear Projection and Support Vector Machines [J]. Acta Automatica Sinica, 2004, 30(6): 890-896.
[7] 宋枫溪, 杨静宇, 刘树海, 等. 基于多类散度差人脸表示方法[J]. 自动化学报, 2006, 32(3): 378-385.
Song Fengxi, Yang Jingyu, Liu Shuhai, et al. Face Representation Based on the Multiple-class Maximum Scatter Difference [J]. Acta Automatica Sinica, 2006, 32(3): 378-385.
[8] Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. |