[1] Fante R L, McCormack M T. Reflection Properties of the Salisbury Screen[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(10): 1443-1454.
[2] Gao Q, Yin Y, Yan D B, et al. Application of Metamaterials to Ultra-thin Radar-absorbing Material Design[J]. Electronic Letters, 2005, 41(17): 936-937.
[3] Simms S, Fusco V. Tunable Thin Radar Absorber Using Artificial Magnetic Ground Plane with Variable Backplane[J]. Electronic Letters, 2006, 42(21): 1197-1198.
[4] Costa F, Monorchio A, Manara G. Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1551-1558.
[5] Paquay M, Iriarte J C, Ederra I, et al. Thin AMC Structure for Radar Cross-section Reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630-3638.
[6] Tan Y, Yuan N, Yang Y, et al. Improved RCS and Efficient Waveguide Slot Antenna[J]. Electronic Letters, 2011, 47(10): 582-583.
[7] Zhang Y, Mittra R, Wang B Z, et al. AMCs for Ultra-thin and Broadband RAM Design[J]. Electronic Letters, 2009, 45(10): 484-485.
[8] Fu Y Q, Li Y Q, Yuan N C. Wideband Composite AMC Surfaces for RCS Reduction[J]. Microwave and Optical Technology Letters, 2011, 53(4): 712-715.
[9] De Cos M E, lvarez Y, Las-Heras F. A Novel Approach for RCS Reduction Using a Combination of Artificial Magnetic Conductors[J]. Progress in Electromagnetics Research, 2010, 107: 147-159.
[10] De Cos M E, lvarez Y, Las-Heras F. On the Influence of Coupling AMC Resonances for RCS Reduction in the SHF Band[J]. Progress in Electromagnetics Research, 2011, 117: 103-119.
[11] Sievenpiper D, Zhang L J, Broas R F J, et al. High-impedance Electromagnetic Surfaces with a Forbidden Frequency Band[J]. IEEE Transactions on Microwave Theory and Technolgy, 1999, 47(11): 2059-2074.
[12] Goussetis G, Feresidis A P, Vardaxoglou J C. Tailoring the AMC and EBG Characteristics of Periodic Metallic Arrays Printed on Grounded Dielectric Substrate[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 82-89.
[13] Chen X, Li L, Liang C H. Locally Resonant Cavity Cell Model for Meandering Slotted Electromagnetic Band Gap Structure[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 3-7.
[14] Falcone F, Lopetegi T, Baena J, et al. Effective Negative-ε Stopband Microstrip Lines Based on Complementary Split Ring Resonators[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(6): 280-282.
[15] Marqués R, Medina F, Rafii-El-Idrissi R. Role of Bianisotropy in Negative Permeability and Left Handed Metamaterials[J]. Physical Review: B, 2002, 65(14): 144441/1-6.
[16] Smith D , Gollub J, Mock J, et al. Calculation and Measurement of Bianisotropy in a Split Ring Resonator Metamaterial[J]. Journal of Applied Physics, 2006, 100(2): 024507.
[17] Katsarakis N, Koschny T, Kafesaki M. Electric Coupling to the Magnetic Resonance of Split Ring Resonators[J]. Applied Physics Letters, 2004, 84(15): 2943-2945.
[18] Hosseini M, Pirhadi A, Hakkak M. A Novel AMC with Little Sensitivity to the Angle of Incidence Using 2-layer Jerusalem Cross FSS[J]. Progress in Electromagnetics Research, 2006, 64: 43-51.
[19] Peng L, Ruan C L, Li Z Q. A Novel Compact and Polarization-dependent Mushroom-type EBG Using CSRR for Dual/triple-band Applications[J]. IEEE Microwave Components Letters, 2010, 20(9): 489-491.
[20] Goussetis G, Feresidis A P. Perturbed Frequency Selective Surfaces for Multiband High Impedance Surfaces[J]. IET Microwave, Antennas and Propagation, 2010, 4(8): 1105-1110.
[21] Liu J C, Liu C, Kuei C P, et al. Design and Analysis of Broadband Microwave Absorber Utilizing FSS Screen Constructed with Circular Fractal Configurations[J]. Microwave and Optical Technology Letters, 2005, 48(3): 449-453. |