[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science, 2004, 306: 666-669.
[2] Geim A K. Graphene: Status and Prospects [J]. Science, 2009, 324(5934): 1530-1534.
[3] Wu J, Pisula W, Müllen K. Graphenes as Potential Material for Electronics [J]. Chemical Reviews, 2007, 107(3): 718-747.
[4] Abanin D A, Morozov S V, Ponomarenko L A, et al. Giant Nonlocality Near the Dirac Point in Graphene [J]. Science, 2011, 332(6027): 328-330.
[5] Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in Semihydrogenated Graphene Sheet [J]. Nano Letters, 2009, 9(11): 3867-3870.
[6] eenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on Graphene [J]. Physical Reviews B, 2008, 77(12): 125416.
[7] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究 [J]. 物理学报, 2012, 61(4): 047106.
Hu Xiaohui, Xu Junmin, Sun Litao. Research of Electronic and Magnetic Properties on Gold Doped Zigzag Graphene Nanoribbons [J]. Acta Physica Sinica, 2012, 61(4): 047106.
[8] Sipahi G M, ZuticIgor, Atodiresei N, et al. Spin Polarization of Co (0001)/graphene Junctions from First Principles [J]. Journal of Physics: Condensed Matter, 2014, 26(10): 104204.
[9] Yu G, Lü X, Jiang L, et al. Structural, Electronic and Magnetic Properties of Transition-metal Embedded Zigzag-edged Graphene Nanoribbons [J]. Journal of Physics D: Applied Physics, 2013, 46(37): 375303.
[10] Liu X Y, Zhang J M. Formaldehyde Molecule Adsorbed on Doped Graphene: a First-principles Study [J]. Applied Surface Science, 2014, 293: 216-219.
[11] Santos E J G, Sanchez-Portal D, Ayuela A. Magnetism of Substitutional Co Impurities in Graphene: Realization of Single π Vacancies [J]. Physical Reviews B, 2010, 81(12): 125433.
[12] Yazyev O V, Helm L. Defect-induced Magnetism in Graphene [J]. Physical Reviews B, 2007, 75(12): 125408.
[13] Chen J H, Li L, Cullen W G, et al. Tunable Kondo Effect in Graphene with Defects [J]. Nature Physics, 2011, 7(7): 535-538.
[14] Lei T M, Liu J J, Zhang Y M, et al. Quantum Explanation for Magnetic Properties of Mn-Doped Graphene [J]. Chinese Physics B, 2013, 22(11): 117502.
[15] Liu J J, Lei T M, Zhang Y M, et al. First-principle Calculations for Magnetism of Mn-doped Graphene [J]. Advanced Materials Research, 2013, 709: 184-187.
[16] Son Y W, Cohen M L, Louie S G. Energy Gaps in Graphene Nanoribbons [J]. Physical Reviews Letters, 2006, 97(21): 216803.
[17] Yue S Y, Yan Q B, Zhu Z G, et al. First-principles Study on Electronic and Magnetic Properties of Twisted Graphene Nanoribbon and Mbius Strips [J]. Carbon, 2014, 71: 150-158.
[18] Li Y, Zhang W, Morgenstern M, et al. Electronic and Magnetic Properties of Zigzag Graphene Nanoribbons on the (111) Surface of Cu, Ag, and Au [J]. Physical Review Letters, 2013, 110(21): 216804.
[19] Wu M H, Zeng X C, Jena P. Unusual Magnetic Properties of Functionalized Graphene Nanoribbons [J]. The Journal of Physical Chemistry Letters, 2013, 4(15): 2482-2488.
[20] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Reviews, 1964, 136(3B): B864-B871.
[21] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Physical Reviews Letters, 1996, 77(18): 3865-3868.
[22] Pfrommer B G, Cote M, Louie S G, et al. Relaxation of Crystals with the Quasi-Newton Method [J]. Journal of Computational Physics, 1997, 131(1): 233-240.
[23] 金汉民. 磁性物理[M]. 北京: 科学出版社, 2013: 84-85. |