[1] GALLAGER R G. Low-density Parity-check Codes [J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
[2] RICHARDSON T J, SHOKROLLAHI M A, URBANKE R L. Design of Capacity-approaching Irregular Low-density Parity-check Codes [J]. IEEE Transactions on Information Theory, 2001, 47(2): 619-637.
[3] HOCEVAR D E. A Reduced Complexity Decoder Architecture via Layered Decoding of LDPC Codes [C]//Proceedings of the IEEE Workshop on Signal Processing Systems. Piscataway: IEEE, 2004: 107-112.
[4] ZHANG X M, TAI Y. High-speed Multi-block-row Layered Decoding for Quasi-cyclic LDPC Codes [C]//Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing. Piscataway: IEEE, 2015: 11-14.
[5] ZHANG J, FOSSORIER M. Shuffled Belief Propagation Decoding [C]//Conference Record of the Asilomar Conference on Signals, Systems and Computers:1. Piscataway: IEEE, 2002, 1: 8-15.
[6] WU S, JIANG X B, NIE Z H. Alternate Iteration of Shuffled Belief Propagation Decoding [C]//Proceedings of the 2010 WRI International Conference on Communications and Mobile Computing: 2. Piscataway: IEEE, 2010: 278-281.
[7] 杨洋, 陈超, 白宝明, 等. LDPC码串行译码策略的收敛速度分析[J]. 西安电子科技大学学报, 2010, 37(5): 795-800.
YANG Yang, CHEN Chao, BAI Baoming, et al. Analysis of the Convergence Rate of Serial Schedule Based Decoding for LDPC Codes[J]. Journal of Xidian University, 2010, 37(5): 795-800.
[8] LAOUINI N, BEN H S L, BOUALLEGUE A. An Optimized Min-sum Variable Node Layering for LDPC Decoding [C]//Proceedings of the International Conference on Multimedia Computing and Systems. Piscataway: IEEE, 2014: 794-799.
[9] SUN Y, CAVALLARO J R. VLSI Architecture for Layered Decoding of QC-LDPC Codes with High Circulant Weight [J]. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2013, 21(10): 1960-1964.
[10] LIU X C, ZHANG Y B, CUI R. Variable-node-based Dynamic Scheduling Strategy for Belief-propagation Decoding of LDPC Codes [J]. IEEE Communications Letters, 2015, 19(2): 147-150.
[11] LI J, YANG G G, ZHAO Z Q. An Improved-performance Decoding Algorithm of LDPC Codes for Layered Decoding [C]//Proceedings of the 2014 IEEE International Conference on Communication Problem-Solving. Piscataway: IEEE, 2014: 318-321.
[12] ZHANG J J, LEI Y M, JIN Y. Check-node Lazy Scheduling Approach for Layered Belief Propagation Decoding Algorithm [J]. Electronics Letters, 2014, 50(4):278-279.
[13] VILA CASADO A I, GRIOT M, WESEL R D. LDPC Decoders with Informed Dynamic Scheduling [J]. IEEE Transactions on Communications, 2010, 58(12): 3470-3479.
[14] CHUNG S Y, RICHARDSON T J, URBANKE R L. Analysis of Sum-product Decoding of Low-density Parity-check Codes Using a Gaussian Approximation [J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670.
[15] JIANG X Q, XIA X G, LEE M H. Efficient Progressive Edge-growth Algorithm Based on Chinese Remainder Theorem [J]. IEEE Transactions on Communications, 2014, 62(2): 442-451.
[16] ZHANG Y, DA X Y. Construction of Girth-eight QC-LDPC Codes from Arithmetic Progression Sequence with Large Column Weight [J]. Electronics Letters, 2015, 51(16): 1257-1259. |