[1] GAU Y T, DAI L K, YANG S P, et al. 256×256 InSb Focal Plane Arrays [C]//Proceedings of SPIE: 4078. Bellingham: SPIE, 2000: 467-479.
[2] SUN W G, FAN H T, PENG Z Y, et al. Photodiode Properties of Molecular Beam Epitaxial InSb on a Heavily Doped Substrate [J]. Infrared Physics and Technology, 2014, 62(2): 143-146.
[3] BAI J, HU W D, GUO N, et al. Performance Optimization of InSb infrared Focal-plane Arrays with Diffractive Microlenses [J]. Journal of Electronic Materials, 2014, 43(8): 2795-2801.
[4] GUO N, HU W D, CHEN X S, et al. Optimization for Mid-wavelength InSb Infrared Focal Plane Arrays under Front-side Illumination [J]. Optical and Quantum Electronics, 2013, 45(7): 673-679.
[5] GUO N, HU W D, CHEN X S, et al. Optimization of Microlenses for InSb Infrared Focal-plane Arrays [J]. Journal of Electronic Materials, 2011, 40(8): 1647-1650.
[6] 张晓玲, 孟庆端, 张立文, 等. 液氮冲击中锑化铟焦平面探测器形变研究[J]. 物理学报, 2014, 63(15): 316-321.
ZHANG Xiaoling, MENG Qingduan, ZHANG Liwen, et al. Deformation Modeling of InSb IRFPAs under Liquid Nitrogen Shock[J]. Acta Physica Sinica, 2014, 63(15): 316-321.
[7] 孟庆端, 张晓玲, 张立文, 等. 128×128 InSb探测器结构模型研究[J]. 物理学报, 2012, 61(19): 111-116.
MENG Qingduan, ZHANG Xiaoling, ZHANG Liwen, et al. Structural Modeling of 128×128 InSb Focal Plane Array Detector[J]. Acta Physica Sinica, 2012, 61(19): 111-116.
[8] WANG L W, SI J J, ZHANG G D, et al. Study on Inductively Coupled Plasma Etching Induced Damage of InSb [C]//Proceedings of SPIE: 9300. Bellingham: SPIE, 2014: 93001F.
[9] LANDSBERG P T, MOSS T S. Recombination Theory for Indium Antimonide [C]//Proceedings of the Physical Society: 69. London: Physical Society of London, 1956: 661-669.
[10] HOLLIS J E L, CHOO S C, HEASELL E L. Recombination Centers in InSb [J]. Journal of Applied Physics, 1967, 38(4):1626-1636.
[11] YOON E, PARK S. Study of Structural Change at the Interface between Si3N4 and InSb and Its Relationship with the Interface Trap Density [C]//16th International Conference on Thin Films. Croatia: Croatian, Hungarian, and Slovenian, 2014: 126-129.
[12] NOTT G J, FINDLAY P C, CROWDER J G, et al. Direct Determination of Shockley-Read-Hall Trap Density in InSb/InAlSb Detectors [J]. Journal of Physics Condensed Matter, 2000, 12(50): L731-L734.
[13] HOPKINS F K, BOYD J T. Dark Current Analysis of InSb Photodiodes [J]. Infrared Physics,1984, 24(24): 391-395.
[14] LIU K C, LUO J J, DAI L K. Evaluation of Implanted InSb p+n Diodes Passivated with Composite Anodic Oxide/SiO x Stack [J]. Physica Status Solidi Applications & Materials, 2008, 205(10): 2469-2475.
[15] HU W D, CHEN X S, YE Z H, et al. Effects of Absorption Layer Characteristic on Spectral Photoresponse of Mid-wavelength InSb Photodiodes [J]. Optical and Quantum Electronics, 2011, 42(11/12/13): 801-808.
[16] QIU W C, HU W D, LIN C, et al. Surface Leakage Current in 12.5μm Long-wavelength HgCdTe Infrared Photodiode Arrays [J]. Optics Letters, 2016, 41(4): 828-831.
[17] SELBERHERR S. Analysis and Simulation of Semiconductor Devices [M]. New York: Springer Verlag Wien, 1984.
[18] HALL R N. Electron-hole Recombination in Germanium [J]. Physical Review, 1952, 87(2): 387-389.
[19] SHOCKLEY W, READ W T J. Statics of Recombination of Holes and Electrons [J]. Physical Review, 1952, 87(5): 835-842.
[20] DZIEWIOR J, SCHMID W. Auger Coefficients for Highly Doped and Highly Excited Silicon [J]. Applied Physics Letters, 1977, 31(5): 346-348. |