Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (3): 124-135.doi: 10.19665/j.issn1001-2400.20230902
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
Received:
2023-03-03
Online:
2024-06-20
Published:
2023-09-14
Contact:
WU Yan
E-mail:18336099322@163.com;wuyan@mail.xidian.edu.cn
CLC Number:
WAN Mengyi, WU Yan. New prediction strategy based evolutionary algorithm for dynamic multi-objective optimization[J].Journal of Xidian University, 2024, 51(3): 124-135.
"
测试函数 | (nt,τt) | NSGA-Ⅱ-A mean(std) | Tr-MOEA mean(std) | DSS mean(std) | RAM mean(std) |
---|---|---|---|---|---|
FDA1 | (10,10) | 2.75e-2(1.18e-2) | 1.75e-1(9.30e-3) | 1.29e-2(9.00e-4) | 9.90e-3(6.00e-4) |
FDA4 | (10,10) | 6.74e-2(5.00e-4) | 7.34e-2(1.25e-2) | 6.58e-2(1.20e-3) | 6.63e-2(1.60e-3) |
dMOP1 | (10,10) | 3.16e-2(8.60e-3) | 6.21e-2(1.74e-2) | 7.44e-2(1.17e-2) | 3.51e-2(2.33e-2) |
dMOP2 | (10,10) | 4.47e-2(1.37e-2) | 1.08e-1(2.75e-2) | 1.58e-2(1.90e-3) | 1.56e-2(1.10e-3) |
F5 | (10,10) | 1.24e+0(3.13e-1) | 2.67e+0(2.34e-1) | 7.97e-2(9.40e-3) | 6.62e-2(8.20-3) |
F6 | (10,10) | 9.22e-1(1.59e-1) | 2.37e+0(7.86e-2) | 9.47e-2(1.20e-2) | 5.07e-2(1.70e-2) |
F7 | (10,10) | 1.12e+0(2.17e-1) | 3.50e+0(1.12e-1) | 6.94e-2(1.17e-2) | 4.69e-2(1.13e-2) |
F8 | (10,10) | 8.19e-2(1.60e-3) | 9.11e-2(8.90e-3) | 8.05e-2(1.60e-3) | 7.70e-2(1.60e-3) |
F9 | (10,10) | 1.26e+0(2.66e-1) | 2.58e+0(5.18e-2) | 9.99e-2(1.05e-2) | 6.96e-2(8.60e-3) |
F10 | (10,10) | 1.29e+0(2.27e-1) | 4.51e+0(5.50e-1) | 7.80e-2(1.24e-2) | 1.02e-1(2.33e-2) |
F11 | (10,10) | 1.40e+0(2.52e-1) | 3.70e+0(1.76e-1) | 1.27e-1(4.21e-2) | 9.65e-2(2.08e-2) |
F12 | (10,10) | 1.20e+0(3.48e-1) | 2.85e+0(1.17e-1) | 7.94e-2(9.20e-3) | 5.29e-2(7.60e-3) |
dMOP3 | (10,10) | 5.07e-2(2.80e-3) | 2.56e-2(6.00e-3) | 2.26e-2(3.70e-3) | 1.84e-2(2.00e-3) |
ZJZ7 | (10,10) | 1.18e+0(2.07e-1) | 2.56e-1(1.76e-2) | 1.34e-1(3.32e-2) | 1.10e-1(1.75e-2) |
ZJZ8 | (10,10) | 4.99e-1(1.33e-1) | 2.49e-1(8.80e-3) | 1.30e-1(2.69e-2) | 1.12e-1(2.61e-2) |
JY10 | (10,10) | 1.27e+0(3.63e-1) | 7.11e-1(4.07e-2) | 3.10e-1(5.98e-2) | 2.59e-1(8.45e-2) |
"
测试函数 | (nt,τt) | NSGA-Ⅱ-A mean(std) | Tr-MOEA mean(std) | DSS mean(std) | RAM mean(std) |
---|---|---|---|---|---|
FDA1 | (10,10) | 9.91e-2(2.22e-2) | 1.58e-1(7.40e-3) | 2.61e-2(1.90e-3) | 2.02e-2(1.70e-3) |
FDA1 | (10,10) | 9.91e-2(2.22e-2) | 1.58e-1(7.40e-3) | 2.61e-2(1.90e-3) | 2.02e-2(1.70e-3) |
FDA4 | (10,10) | 5.09e-2(4.20e-3) | 5.74e-2(3.80e-3) | 1.83e-1(6.00e-3) | 1.83e-1(7.80e-3) |
dMOP1 | (10,10) | 1.08e-1(2.24e-2) | 6.67e-2(1.37e-2) | 1.51e-1(8.60e-2) | 6.52e-2(3.88e-2) |
dMOP2 | (10,10) | 6.84e-2(4.40e-3) | 9.33e-2(1.75e-2) | 3.53e-2(4.70e-3) | 3.59e-2(3.00e-3) |
F5 | (10,10) | 9.06e+0(4.01e+0) | 6.72e-1(1.49e-2) | 2.86e-1(7.72e-2) | 2.52e-1(7.49e-2) |
F6 | (10,10) | 5.30e+0(2.13e+0) | 7.01e-1(1.15e-2) | 5.58e-1(4.95e-1) | 2.47e-1(2.51e-1) |
F7 | (10,10) | 7.49e+0(1.91e+0) | 7.60e-1(1.02e-2) | 2.47e-1(1.05e-1) | 1.64e-1(8.84e-2) |
F8 | (10,10) | 6.93e-2(3.70e-3) | 6.52e-2(2.60e-3) | 2.44e-1(1.92e-2) | 2.42e-1(1.22e-2) |
F9 | (10,10) | 9.26e+0(3.62e+0) | 5.81e-1(1.12e-2) | 3.40e-1(6.47e-2) | 2.22e-1(3.70e-2) |
F10 | (10,10) | 9.13e+0(3.62e+0) | 5.98e-1(2.59e-2) | 2.62e-1(7.01e-2) | 3.75e-1(1.21e-1) |
F11 | (10,10) | 9.30e+0(2.56e+0) | 8.01e-1(7.00e-3) | 8.40e-1(5.97e-1) | 5.04e-1(2.44e-1) |
F12 | (10,10) | 8.39e+0(4.03e+0) | 7.06e-1(1.69e-2) | 2.89e-1(5.77e-2) | 1.92e-1(5.62e-2) |
dMOP3 | (10,10) | 2.55e-1(1.01e-2) | 2.78e-2(5.80e-3) | 2.64e-2(4.90e-3) | 1.58e-1(5.20e-3) |
ZJZ7 | (10,10) | 8.24e+0(2.31e+0) | 2.77e-1(1.72e-2) | 4.12e-1(1.08e-1) | 3.97e-1(1.16e-1) |
ZJZ8 | (10,10) | 3.19e+0(7.83e-1) | 2.71e-1(1.01e-2) | 4.96e-1(2.14e-1) | 3.89e-1(1.33e-1) |
JY10 | (10,10) | 5.27e+0(7.33e-1) | 4.23e-1(1.20e-1) | 3.49e-1(2.96e-1) | 3.64e-1(6.75e-1) |
"
测试函数 | (nt,τt) | NSGA-Ⅱ-A mean(std) | Tr-MOEA mean(std) | DSS mean(std) | RAM mean(std) |
---|---|---|---|---|---|
F9 | (10,5) | 2.26e+0(3.16e-1) | 2.74e+0(1.74e-2) | 2.56e-1(3.38e-2) | 1.84e-1(1.82e-2) |
(10,10) | 1.27e+0(2.67e-1) | 2.58e+0(5.18e-2) | 9.99e-2(1.05e-2) | 6.96e-2(8.60e-3) | |
(10,20) | 4.95e-1(1.60e-1) | 2.24e+0(1.31e-1) | 3.34e-2(4.00e-3) | 4.39e-2(3.80e-3) | |
F10 | (10,5) | 2.56e+0(3.89e-1) | 6.72e+0(5.71e-1) | 2.02e-1(2.45e-2) | 3.05e-1(4.79e-2) |
(10,10) | 1.29e+0(2.27e-1) | 4.52e+0(5.51e-1) | 8.14e-2(8.00e-3) | 1.02e-1(2.33e-2) | |
(10,20) | 5.79e-1(1.04e-1) | 2.35e+0(4.32e-1) | 3.52e-2(4.60e-3) | 3.34e-2(6.30e-3) | |
F11 | (10,5) | 2.48e+0(3.69e-1) | 4.47e+0(1.15e-1) | 3.38e-1(1.32e-1) | 3.93e-1(8.38e-2) |
(10,10) | 1.40e+0(2.52e-1) | 3.70e+0(1.76e-1) | 1.27e-1(4.21e-2) | 9.65e-2(2.08e-2) | |
(10,20) | 7.70e-1(1.22e-1) | 3.13e+0(2.64e-1) | 3.99e-2(1.27e-2) | 2.75e-2(3.00e-3) | |
F12 | (10,5) | 2.34e+0(5.71e-1) | 3.18e+0(2.40e-1) | 2.19e-1(3.33e-2) | 1.76e-1(2.94e-2) |
(10,10) | 1.21e+0(3.49e-1) | 2.85e+0(1.17e-1) | 794e-2(9.20e-3) | 5.29e-2(7.60e-3) | |
(10,20) | 5.02e-1(1.61e-1) | 2.37e+0(1.45e-1) | 2.73e-2(3.40e-3) | 2.42e-2(2.30e-3) | |
DMOP3 | (10,5) | 1.04e-1(1.81e-2) | 3.20e-2(8.90e-3) | 6.27e-2(6.20e-3) | 4.97e-2(5.50e-3) |
(10,10) | 5.07e-2(2.80e-3) | 2.56e-2(6.00e-3) | 2.26e-2(3.70e-3) | 1.84e-2(2.00e-3) | |
(10,20) | 3.62e-2(2.20e-3) | 2.14e-2(2.20e-3) | 1.02e-2(9.00e-3) | 1.07e-2(2.00e-3) | |
ZJZ7 | (10,5) | 2.83e+0(3.14e-1) | 3.92e-1(3.00e-2) | 3.94e-1(1.65e-1) | 3.36e-1(5.86e-2) |
(10,10) | 1.18e+0(2.07e-1) | 2.56e-1(1.76e-2) | 1.35e-1(3.32e-2) | 1.10e-1(1.75e-2) | |
(10,20) | 3.00e-1(8.76e-2) | 1.95e-1(4.80e-3) | 4.01e-2(5.70e-3) | 3.26e-2(6.20e-3) | |
ZJZ8 | (10,5) | 1.25e+0(1.97e-1) | 2.81e-1(2.24e-2) | 3.37e-1(5.22e-2) | 2.64e-1(6.15e-2) |
(10,10) | 4.99e-1(1.33e-1) | 2.50e-1(8.80e-3) | 1.30e-1(2.69e-2) | 1.12e-1(2.61e-2) | |
(10,20) | 1.54e-1(5.12e-2) | 1.51e-1(9.80e-3) | 3.97e-2(5.30e-3) | 2.57e-2(6.50e-3) | |
JY10 | (10,5) | 2.38e+0(4.77e-1) | 9.68e-1(6.32e-2) | 4.28e-1(1.95e-1) | 3.18e-1(2.17-1) |
(10,10) | 1.26e+0(3.63e-1) | 7.11e-1(4.07e-2) | 3.10e-1(5.98e-2) | 2.59e-1(8.45e-2) | |
(10,20) | 7.71e-1(2.85e-1) | 5.87e-1(5.67e-2) | 1.33e-1(5.20e-3) | 1.28e-1(8.70e-3) |
"
测试函数 | (nt,τt) | NSGA-Ⅱ-A mean(std) | Tr-MOEA mean(std) | DSS mean(std) | RAM mean(std) |
---|---|---|---|---|---|
F9 | (5,10) | 1.65e+0(2.12e-1) | 2.63e+0(9.19e-2) | 8.42e-2(1.77e-2) | 7.59e-2(1.66e-2) |
(10,10) | 1.26e+0(2.66e-1) | 2.58e+0(5.18e-2) | 9.99e-2(1.05e-2) | 6.96e-2(8.6e-3) | |
(20,10) | 8.53e-1(2.60e-1) | 2.56e+0(3.16e-2) | 7.47e-2(1.09e-2) | 6.46e-2(1.11e-2) | |
F10 | (5,10) | 1.88e+0(2.80e-1) | 4.03e+0(5.02e-1) | 1.24e-1(2.78e-2) | 1.43e-1(4.40e-2) |
(10,10) | 1.29e+0(2.27e-1) | 4.52e+0(5.51e-1) | 8.14e-2(8.00e-3) | 1.02e-1(2.33e-2) | |
(20,10) | 7.75e-1(1.73e-1) | 4.06e+0(5.34e-1) | 8.83e-2(9.68e-1) | 7.39e-2(1.43e-2) | |
F11 | (5,10) | 2.02e+0(3.52e-1) | 3.99e+0(1.78e-1) | 1.36e-1(2.70e-2) | 1.45e-1(3.57e-2) |
(10,10) | 1.40e+0(2.52e-1) | 3.70e+0(1.76e-1) | 1.27e-1(4.21e-2) | 9.65e-2(2.08e-2) | |
(20,10) | 9.68e-1(2.31e-1) | 3.54e+0(1.75e-1) | 8.86e-2(3.78e-2) | 6.67e-2(2.00e-2) | |
F12 | (5,10) | 1.88e+0(3.14e-1) | 2.85e+0(1.23e-1) | 1.24e-1(2.06e-2) | 6.44e-2(6.60e-3) |
(10,10) | 1.21e+0(3.49e-1) | 2.85e+0(1.17e-1) | 7.94e-2(9.20e-3) | 5.29e-2(7.60e-3) | |
(20,10) | 9.61e-1(4.25e-1) | 2.73e+0(2.78e-2) | 5.97e-2(9.80e-3) | 4.55e-2(7.5e-3) | |
DMOP3 | (5,10) | 8.72e-2(1.40e-2) | 2.53e-2(1.26e-2) | 2.55e-2(3.10e-3) | 1.71e-2(2.50e-3) |
(10,10) | 5.07e-2(2.81e-3) | 2.56e-2(6.00e-3) | 2.26e-2(3.70e-3) | 1.84e-2(2.00e-3) | |
(20,10) | 3.81e-2(2.30e-3) | 2.14e-2(2.20e-3) | 2.13e-2(3.40e-3) | 1.79e-2(2.40e-3) | |
ZJZ7 | (5,10) | 1.19e+0(2.02e+0) | 3.11e-1(9.80e-3) | 1.54e-1(5.63e-2) | 1.02e-1(2.81e-2) |
(10,10) | 1.18e+0(2.07e-1) | 2.56e-1(1.76e-2) | 1.35e-1(3.32e-2) | 1.10e-1(1.75e-2) | |
(20,10) | 1.16e+0(2.09e-1) | 3.10e-1(1.27e-2) | 1.43e-1(5.16e-2) | 1.07e-1(1.83e-2) | |
ZJZ8 | (5,10) | 5.15e-1(1.16e-1) | 3.06e-1(1.28e-2) | 1.61e-1(2.45e-2) | 1.19e-1(2.53e-2) |
(10,10) | 5.00e-1(1.33e-1) | 2.50e-1(8.80e-3) | 1.30e-1(2.69e-2) | 1.12e-1(2.61e-2) | |
(20,10) | 5.42e-1(1.65e-1) | 3.06e-1(1.11e-2) | 1.36e-1(2.69e-2) | 1.17e-1(3.30e-2) | |
JY10 | (5,10) | 7.28e-1(4.67e-1) | 8.75e-1(5.17e-2) | 5.37e-1(2.38e-1) | 4.76e-1(2.28e-1) |
(10,10) | 1.27e+0(3.63e-1) | 7.11e-1(4.07e-2) | 3.10e-1(5.89e-2) | 2.60e-1(8.45e-2) | |
(20,10) | 1.01e+0(4.88e-1) | 6.97e-1(6.24e-2) | 2.94e-1(2.32e-1) | 3.12e-1(2.69e-1) |
[1] | LIN W, XU S, HE L, et al. Multi-Resource Scheduling and Power Simulation for Cloud Computing[J]. Information Sciences, 2017, 397:168-186. |
[2] | WU H, KUANG L, WANG F, et al. A Multi-Objective Box-Covering Algorithm for Fractal Modularity on Complex Networks[J]. Applied Soft Computing, 2017, 61:294-313. |
[3] | ZHANG Z. Multi-Objective Optimization Immune Algorithm in Dynamic Environments and Its Application to Greenhouse Control[J]. Applied Soft Computing, 2008, 8(2):959-971. |
[4] | LIN W, XU S Y, LI J, et al. Design and Theoretical Analysis of Virtual Machine Placement Algorithm Based on Peak Workload Characteristics[J]. Soft Computing, 2017, 21(5):1301-1314. |
[5] | LI Y, TONG S, LI T. Adaptive Fuzzy Output Feedback Dynamic Surface Control of Interconnected Nonlinear Pure-Feedback Systems[J]. IEEE Transactions on Cybernetics, 2014, 45(1):138-149. |
[6] | BUI L T, MICHALEWICZ Z, PARKINSON E, et al. Adaptation in Dynamic Environments:A Case Study in Mission Planning[J]. IEEE Transactions on Evolutionary Computation, 2011, 16(2):190-209. |
[7] | MAVROVOUNIOTIS M, MÜLLER F M, YANG S. Ant Colony Optimization with Local Search for Dynamic Traveling Salesman Problems[J]. IEEE Transactions on Cybernetics, 2016, 47(7):1743-1756. |
[8] | YAN X H, CAI B G, NING B, et al. Moving Horizon Optimization of Dynamic Trajectory Planning for High-Speed Train Operation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(5):1258-1270. |
[9] | LIU M. Robotic Online Path Planning on Point Cloud[J]. IEEE Transactions on Cybernetics, 2015, 46(5):1217-1228. |
[10] | CRUZ A R, CARDOSO R T N, TAKAHASHI R H C. Multi-Objective Dynamic Optimization of Vaccination Campaigns Using Convex Quadratic Approximation Local Search[C]//International Conference on Evolutionary Multi-Criterion Optimization. Heidelberg:Springer, 2011:404-417. |
[11] | JIANG M, HUANG Z, QIU L, et al. Transfer Learning-Based Dynamic Multi-Objective Optimization Algorithms[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4):501-514. |
[12] | 刘远振, 杨颜博, 张嘉伟, 等. 一种抗分布式机器学习恶意节点的区块链方案[J]. 西安电子科技大学学报, 2023, 50(2):178-187. |
LIU Yuanzhen, YANG Yanbo, ZHANG Jiawei, et al. A Blockchain Scheme Against Distributed Machine Learning Malicious Nodes[J]. Journal of Xidian University, 2023, 50(2):178-187. | |
[13] | 郭刚, 杨超, 陈明哲, 等. 结合机器学习的SSR代理下App流量识别方法[J]. 西安电子科技大学学报, 2023, 50(2):138-146. |
GUO Gang, YANG Chao, CHEN Mingzhe, et al. App Traffic Recognition Based on SSR Agent Combined with Machine Learning[J]. Journal of Xidian University, 2023, 50(2):138-146. | |
[14] | GOH C K, TAN K C. A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multi-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(1):103-127. |
[15] | CHEN R, LI K, YAO X. Dynamic Multi-Objectives Optimization with a Changing Number of Objectives[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(1):157-171. |
[16] | RUAN G, YU G, ZHENG J, et al. The Effect of Diversity Maintenance on Prediction in Dynamic Multi-Objective Optimization[J]. Applied Soft Computing, 2017, 58:631-647. |
[17] | MARTINEZ-PENALOZA M G, MEZURA-MONTES E. Immune Generalized Differential Evolution for Dynamic Multi-Objective Environments:an Empirical Study[J]. Knowledge-Based Systems, 2018, 142:192-219. |
[18] | MA X, YANG J, SUN H, et al. Multiregional Co-Evolutionary Algorithm for Dynamic Multi-Objective Optimization[J]. Information Sciences, 2021, 545:1-24. |
[19] | PENG Z, ZHENG J, ZOU J, et al. Novel Prediction and Memory Strategies for Dynamic Multi-Objective Optimization[J]. Soft Computing, 2015, 19:2633-2653. |
[20] | WANG Y, LI B. Investigation of Memory-Based Multi-Objective Optimization Evolutionary Algorithm in Dynamic Environment[C]//2009 IEEE Congress on Evolutionary Computation.Piscataway:IEEE, 2009:630-637. |
[21] | ZHAO Q, YAN B, SHI Y, et al. Evolutionary Dynamic Multi-Objective Optimization via Learning from Historical Search Process[J]. IEEE Transactions on Cybernetics, 2021, 52(7):6119-6130. |
[22] | WANG P, MA Y, WANG M. A Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on Particle Swarm Prediction Strategy and Prediction Adjustment Strategy[J]. Swarm and Evolutionary Computation, 2022, 75:101164. |
[23] | CHEN Y, ZOU J, LIU Y, et al. Combining a Hybrid Prediction Strategy and a Mutation Strategy for Dynamic Multi-Objective Optimization[J]. Swarm and Evolutionary Computation, 2022, 70:101041. |
[24] | WU Y, JIN Y, LIU X. A Directed Search Strategy for Evolutionary Dynamic Multi-Objective Optimization[J]. Soft Computing, 2015, 19(11):3221-3235. |
[25] | XU D, JIANG M, HU W, et al. An Online Prediction Approach Based on Incremental Support Vector Machine for Dynamic Multi-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4):690-703. |
[26] | WANG F, LI Y, LIAO F, et al. An Ensemble Learning Based Prediction Strategy for Dynamic Multi-Objective Optimization[J]. Applied Soft Computing, 2020, 96:106592. |
[27] | LIU R, NIU X, FAN J, et al. An Orthogonal Predictive Model-Based Dynamic Multi-Objective Optimization Algorithm[J]. Soft Computing, 2015, 19:3083-3107. |
[28] | RONG M, GONG D, ZHANG Y, et al. Multidirectional Prediction Approach for Dynamic Multi-Objective Optimization Problems[J]. IEEE Transactions on Cybernetics, 2018, 49(9):3362-3374. |
[29] | WU Y, SHI L, LIU X. A New Dynamic Strategy for Dynamic Multi-Objective Optimization[J]. Information Sciences, 2020, 529:116-131. |
[30] | WU H, KUANG L, WANG F, et al. A Multi-Objective Box-Covering Algorithm for Fractal Modularity on Complex Networks[J]. Applied Soft Computing, 2017, 61:294-313. |
[31] | LIU Z, WANG H. Improved Population Prediction Strategy for Dynamic Multi-Objective Optimization Algorithms Using Transfer Learning[C]//2021 IEEE Congress on Evolutionary Computation.Piscataway:IEEE, 2021:103-110. |
[32] | JIANG M, HUANG Z, QIU L, et al. Transfer Learning-Based Dynamic Multi-Objective Optimization Algorithms[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4):501-514. |
[33] | JIANG M, HU W, QIU L, et al. Solving Dynamic Multi-Objective Optimization Problems via Support Vector Machine[C]//2018 Tenth International Conference on Advanced Computational Intelligence.Piscataway:IEEE, 2018:819-824. |
[34] | HU W, JIANG M, GAO X, et al. Solving Dynamic Multi-Objective Optimization Problems Using Incremental Support Vector Machine[C]//2019 IEEE Congress on Evolutionary Computation.Piscataway:IEEE, 2019:2794-2799. |
[35] | JIANG M, WANG Z, HONG H, et al. Knee Point-Based Imbalanced Transfer Learning for Dynamic Multi-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1):117-129. |
[36] | WELCH G, BISHOP G. An Introduction to the Kalman Filter(1995)[J/OL].[1995-01-01].https://perso.crans.org/club-krobot/doc/kalman.pdf. |
[37] | FARINA M, DEB K, AMATO P. Dynamic Multi-Objective Optimization Problems:Test Cases,Approximations,and Applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5):425-442. |
[1] | GAO Weifeng, WANG Qiong, LI Hong, XIE Jin, GONG Maoguo. Research on the multi-objective algorithm of UAV cluster task allocation [J]. Journal of Xidian University, 2024, 51(2): 1-12. |
[2] | LIU Tianyu,CAO Lei. Many-objective evolutionary algorithm based on the multitasking mechanism [J]. Journal of Xidian University, 2022, 49(4): 134-143. |
[3] | LEI Yu;JIAO Licheng;GONG Maoguo;LI Lingling. Enhanced NNIA for multi-objective examination timetabling problems [J]. Journal of Xidian University, 2016, 43(2): 157-161+192. |
[4] | WEN Honghang;GE Jianhua;XU Tangwen. Low complexity method for PAPR reduction of OFDM signals [J]. J4, 2015, 42(5): 188-193. |
[5] | DAI Cai;WANG Yuping;HE Xiaoguang. New ranking method for many-objective problems [J]. J4, 2014, 41(6): 89-94. |
[6] | DONG Ning;WANG Yuping. Multi-objective evolutionary algorithm based on preference for constrained optimization problems [J]. J4, 2014, 41(1): 98-104+188. |
[7] | PENG Yali;LIU Fang. Organizational evolutionary algorithm for occlusion recovery [J]. J4, 2013, 40(4): 137-141. |
[8] | TONG Fei;WANG Jun;LI Hongwei. Novel passive radar location algorithm based on Memetic optimization by using the bearing-and-Doppler frequency [J]. J4, 2012, 39(4): 46-51+102. |
[9] | CHENG Wei;SHI Haoshan;LI Dong. Novel localization algorithm based on evolutionary programming resampling in WSN [J]. J4, 2011, 38(4): 154-159. |
[10] | MU Cai-hong;JIAO Li-cheng;LIU Yi. M-Elite coevolutionary algorithm for constrained optimization [J]. J4, 2010, 37(5): 852-861. |
[11] |
LIU Ruo-chen1;2;DU Hai-feng1;JIAO Li-cheng1.
Immune monoclonal strategy based on the Cauthy mutation [J]. J4, 2004, 31(4): 551-556. |
|