[1]Cardoso J F. Blind Signal Separation: Statistical Principles[J]. Proceeding of the IEEE, 1998, 86(10): 2009-2025.
[2]李小军, 朱孝龙, 张贤达. 盲信号分离研究分类与展望[J]. 西安电子科技大学学报, 2001, 31(3): 399-404.
Li Xiaojun, Zhu Xiaolong, Zhang Xianda. Blind Source Separation: Classification and Frotiers[J]. Journal of Xidian University, 2001, 31(3): 399-404.
[3]Comon P. Independent Component Analysis: a New Concept? [J]. Signal Processing, 1994, 36(3): 287-314.
[4]Bell A J, Swjnowski T J. An Information-maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
[5]Karhunen J, Joutsensalo J. Representation and Separation of Signal Using Nonlinear PCA Type Learning[J]. Neural Networks, 1994, 7(1): 113-121.
[6]Zhu Xiaolong, Zhang Xianda, Ding Zizhe, et al. Adaptive Nonlinear PCA Algorithms for Blind Source Separation without Prewhitening[J]. IEEE Trans on Circuits and Systems, 2006, 53(3): 745-753.
[7]何昭水, 谢胜利, 傅予力. 稀疏表示与病态混叠盲分离[J]. 中国科学E辑·信息科学, 2006, 36(8): 864-879.
He Zhaoshui, Xie Shengli, Fu Yuli. Sparse Representations and Blind Source Separation of Morbidity Mixtures[J]. Science in China Ser E Information Sciences, 2006, 36(8): 864-879.
[8]冶继民, 张贤达, 金海红. 超定盲信号分离的半参数统计方法[J]. 电波科学学报, 2006, 21(3): 331-336.
Ye Jimin, Zhang Xianda, Jin Haihong.Semi-parametric Statistical Approach for Overdetermined Blind Source Separation[J]. Chinese Joural of Radio Science, 2006, 21(3): 331-336.
[9]张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004. |