[1]Gallager R. Low-density Parity-check Codes [J]. IRE Trans on Information Theory, 1962, 8(1): 21-28.
[2]MacKay D. Good Error Correcting Codes Based on Very Sparse Matrices [J]. IEEE Trans on Information Theory, 1999, 45(2): 399-43.
[3]孙韶辉, 慕建君, 王新梅. 低密度校验码研究及其新进展 [J]. 西安电子科技大学学报, 2001, 28(3): 393-397.
Sun Shaohui, Mu Jianjun, Wang Xinmei. Study and Advances of Low Density Parity Check Codes [J]. Journal of Xidian University, 2001, 28(3): 393-397
[4]Richardson T, Urbanke R. The Capacity of Low-density Parity Check Codes under Message-passing Decoding [J]. IEEE Trans on Information Theory, 2001, 47(2): 599-618.
[5]Tanner M R. A Recursive Approach to Low Complexity Codes [J]. IEEE Trans on Inform Theory, 1981, 27(9): 533-547.
[6]Andersson M. Graph Optimization for Sparse Graph Codes [EB/OL]. [2007-10-25]. http://www.ee.kth.se/php/modules/publications/reports/2007/IR-SB-XR-EE-KT%202007:001.pdf.
[7]Hu X Y, Eleftheriou E, Arnold D M. Regular and Irregular Progressive Edge-growth Tanner Graphs [J]. IEEE Trans on Inform Theory, 2005, 51(1): 386-398.
[8]Mohan S, Anderson J. Computationally Optimal Metric-First Code Tree Search Algorithms [J]. IEEE Trans on Comm, 1984, 32(6): 710-717.
[9]Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithms (Second Edition) [M]. Cambridge: The MIT Press, 2001. |