[1]董刚, 杨银堂, 李跃进. 基于“有效电容”的RLC互连树延时分析[J]. 西安电子科技大学学报, 2004, 31(4): 509-512.
Dong Gang, Yang Yintang, Li Yuejin. Analysis of RLC Interconnect Tree Delay Based on“Effective Capacitance”[J]. Journal of Xidian University, 2004, 31(4): 509-512.
[2]周郭飞, 金德鹏, 曾烈光. 改进的RLC互连延时估算方法[J]. 清华大学学报, 2008, 48(1): 46-50.
Zhou Guofei, Jin Depeng, Zeng Lieguang. Improved Delay Estimation Method for RLC Interconnects[J]. Journal of Tsinghua University, 2008, 48(1): 46-50.
[3]Cong J. An Interconnect-centric Design Flow for Nanometer Technologies[J]. Proceedings of the IEEE, 2001, 89(4): 505-528.
[4]Sylvester D, Keutzer K. A Global Wiring Paradigm for Deep Submicron Design[J]. Computer-Aided Design Integrated Circuits and Systems, 2000, 19(2): 242-252.
[5]Banerjee K, Mehrotra A. A Power-optimal Repeater Insertion Methodology for Global Interconnects in Nanometer Designs[J]. IEEE Trans on Electron Devices, 2002, 49(11): 2001-2007.
[6]Kapur P, Chandra G, Saraswat K C. Power Estimation in Global Interconnects and Its Reduction Using a Novel Repeater Optimization Methodology[C]//Proceedings of the 39th Annual Design Automation Conference. New York: ACM, 2002: 461-466.
[7]Liu Xun, Peng Yuantao, Papaefthymiou M C. Practical Repeater Insertion for Low Power: What Repeater Library Do We Need?[C]//Proceedings of the 41st Annual Design Automation Conference. New York: ACM, 2004: 30-35.
[8]Wason V, Banerjee K. A Probabilistic Framework for Power-optimal Repeater Insertion in Global Interconnects under Parameter Variations[C]//Proceedings of the 2005 International Symposium on Low Power Electronics and Design. New York: ACM, 2005: 131-136.
[9]Banerjee K, Lin S C, Keshavarzi A, et al. A Selfconsistent Junction Temperature Estimation Methodology for Nanometer Scale ICs with Implications for Performance and Thermal Management[C]//Electron Devices Meeting, 2003. Washington: IEEE Electronic Devices Society, 2003: 887-890.
[10]He Lei, Liao Weiping, Stan M. System Level Leakage Reduction Considering the Interdependence of Temperature and Leakage[C]//Proceedings of the 41st Annual Design Automation Conference. New York: ACM, 2004: 12-17.
[11]Huang Wei, Humenay E, Skadron K, et al. The Need for a Fullchip and Package Thermal Model for Thermally Optimized IC Designs[C]//Proceeding of Low-Power Electronics Design. New York: ACM, 2005: 245-250.
[12]Ku J C, Ismail Y. Thermal-aware Methodology for Repeater Insertion in Low-Power VLSI Circuits[J]. IEEE Trans on Very Large Scale Integration Systems, 2007, 15(8): 963-970.
[13]Mui M L, Banerjee K, Mehrotra A. Supply and Power Optimization in Leakage-dominant Technologies[J]. IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(9): 1362-1371.
[14]HotSpot 4.1. Temperature Modeling Tool[EB/OL]. [2008-03-24]. http://lava.cs.virginia.edu/HotSpot/.
[15]Link G M, Vijaykrishnan N. Thermal Trends in Emerging Technologies[C]//Proceedings of the 7th International Symposium on Quality Electronic Design. Washington: IEEE Computer Society, 2006: 625-632.
[16]Huang Wei. HotSpot—a Chip and Package Compact Thermal Modeling Methosology for VLSI Design [D]. Charlottesville: Department of Electrical and Computer Engineering University of Virginia, 2007.
[17]Bakoglu H. Circuits, Interconnections and Packaging for VLSI[M]. New Jersey: Addison-Wesley Pub (Sd), 1990.
[18]Chen Guoqing, Friedman E G. Low-power Repeaters Driving RC and RLC Interconnects with Delay and Bandwidth Constraints[J]. IEEE Trans on Very Large Scale Integration Systems, 2006, 14(2): 161-172.
[19]Su Haihua, Liu F, Devgan A, et al. Full Chip Leakage Estimation Considering Power Supply and Temperature Variations[C]//Proceedings of the 2003 International Symposium on Low Power Electronics and Design. New York: Association for Computing Machinery, 2003: 78-83.
[20]ITRS. International Technology Roadmap for Semiconductors[EB/OL]. [2008-03-21]. http://www.itrs.net/. |