[1] Ghahramani Z, Jordan M I. Factorial Hidden Markov Models [J] . Machine learning, 1997, 29(2): 245-273.
[2] Baum L E, Eagon J A. An Inequality with Applications to Statistical Estimation for Probabilistic Functions of Markov Processes and to a Model for Ecology [J] . Bull Amer Math Soc, 1967(73): 360-363.
[3] Logan B, Moreno P J. Factorial Hidden Markov Models for Speech Recognition: Preliminary Experiments [C] //Technical Report Series CFL 97/7. Cambridge: Cambridge Research Laboratory, 1997.
[4] Jacobs R A, Jiang W, Tanner M A. Factorial Hidden Markov Models and the Generalized Backfitting Algorithm [J] . Neural computation, 2002, 14(10): 2415-2437.
[5] Reyes-Gomez M J, Raj B, Ellis D. Multi-channel Source Separation by Factorial HMMs [C] //Proc ICASSP. Hong Kong: IEEE, 2003: 1664-1667.
[6] Deoras A N, Hasegawa-Johnson M. A Factorial HMM Approach to Simultaneous Recognition of Isolated Digits Spoken by Multiple Talkers on One Audio Channel [C] //Proc ICASSP. Montreal: IEEE, 2004: 1861-1864.
[7] Kulic D, Takano W, Nakamura Y. Representability of Human Motions by Factorial Hidden Markov Models [C] //Proc IROS. Tokyo: IEEE, 2007: 2388-2393.
[8] Lee D, Kulic D, Nakamura Y. Missing Motion Data Recovery Using Factorial Hidden Markov Models [C] //Proc ICRA. Tokyo: IEEE, 2008: 1722-1728.
[9] Chen C, Liang J, Zhao H, et al. Factorial HMM and Parallel HMM for Gait Recognition [J] . IEEE Trans on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2009, 39(1): 114-123.
[10] Duh K. Jointly Labeling Multiple Sequences: a Factorial Hmm Approach [C] //Proc of the Association for Computational Lingustics Morristown. Ann Arbor: Student Research Workshop, 2005: 19-24.
[11] Gael J V, Teh Y W, Ghahramani Z. The Infinite Factorial Hidden Markov Model [J] . Advances in Neural Information Processing Systems, 2008(21):1697-1704.
[12] Rodgers J L, Nicewander W A. Thirteen Ways to Look at the Correlation Coefficient [J] . The American Statistician, 1988(42): 59-66.
[13] Zhang S, Xie L, Adams M D. Entropy Based Feature Selection Scheme for Real Time Simultaneous Localization and Map Building [C] //Proc IRS/RSJ. Edmonton: IEEE, 2005: 1175-1180.
[14] Akaike H. Canonical Correlation Analysis of Time Series and the Use of an Information Criterion [J] . System Identification: Advances and Case Studies, 1976, (126): 27-96.
[15] Gonzalez I, Dejean S, Martin P G P, et al. CCA: an R Package to Extend Canonical Correlation Analysis [J] . Journal of Statistical Software, 2007, 23(12): 1-14.
[16] Chen C, Liang J, Zhao H, et al. Gait Recognition Using Hidden Markov Model [C] //Advances in Natural Computation. Xi'an: Springer Verlag, 2006: 399-407.
[17] Leurgans S E, Moyeed R A, Silverman B W. Canonical Correlation Analysis When the Data Are Curves[J] . Journal of the Royal Statistical Society B, 1993, 55(3): 725-740.
[18] Liu Y, Collins R T, Tsin Y. Gait Sequence Analysis Using Frieze Patterns [C] //Proc ECCV. London: Springer, 2002: 657-671.
[19] Teague M R. Image Analysis Via the General Theory of Moments [J] . Journal of the Optical Society of America, 1979, 70(8): 920-930.
[20] Gross R, Shi J. The Cmu Motion of Body (Mobo) Database [C] //Technical Report CMU-RI-TR-01-18. Pittsburgh: Robotics Institute, Carnegie Mellon University, 2001.
[21] CASIA Gait Database [DB/OL] . [2010-02-05] . http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp.
[22] Clark A F, Clark C. Performance Characterization in Computer Vision a Tutorial [DB/OL] . [2010-02-10] . http://peipa.esser.ac.uk/benchmark/tutorial/esser/tutorial.pdf. |