Journal of Xidian University ›› 2019, Vol. 46 ›› Issue (5): 155-161.doi: 10.19665/j.issn1001-2400.2019.05.022
Previous Articles Next Articles
XIAO Lijun,GUO Jichang(),GU Xiangyuan
Received:
2019-06-07
Online:
2019-10-20
Published:
2019-10-30
Contact:
Jichang GUO
E-mail:jcguo@tju.edu.cn
CLC Number:
XIAO Lijun,GUO Jichang,GU Xiangyuan. Algorithm for selection of features based on dynamic weights using redundancy[J].Journal of Xidian University, 2019, 46(5): 155-161.
"
算法 | Mfeat_zer | Movement_libras | Musk1 | Mfeat_fac | Mfeat_pix | Semeion | Isolet | ORL | WarpPIE10P | gisette | 均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
DWUR | 0.699 8 | 0.665 3 | 0.807 4 | 0.894 5 | 0.797 5 | 0.692 6 | 0.740 8 | 0.688 3 | 0.890 1 | 0.917 8 | 0.779 4 |
DWFS | 0.687 2 | 0.644 7 | 0.796 6 | 0.884 8 | 0.762 1 | 0.634 3 | 0.732 7 | 0.683 4 | 0.865 1 | 0.908 7 | 0.760 0 |
IWFS | 0.684 5 | 0.644 7 | 0.796 9 | 0.874 3 | 0.715 2 | 0.580 2 | 0.662 5 | 0.675 2 | 0.864 9 | 0.898 2 | 0.739 7 |
CMI | 0.682 9 | 0.614 8 | 0.805 0 | 0.883 7 | 0.745 0 | 0.631 7 | 0.663 8 | 0.618 3 | 0.844 1 | 0.915 3 | 0.740 5 |
CIFE | 0.682 3 | 0.644 7 | 0.787 0 | 0.864 4 | 0.704 3 | 0.591 0 | 0.672 8 | 0.676 1 | 0.865 4 | 0.892 0 | 0.738 0 |
JMI | 0.676 8 | 0.600 9 | 0.785 8 | 0.871 8 | 0.727 4 | 0.599 1 | 0.642 2 | 0.631 1 | 0.845 8 | 0.902 6 | 0.728 3 |
JMIM | 0.688 7 | 0.619 5 | 0.788 1 | 0.881 6 | 0.760 5 | 0.640 1 | 0.653 0 | 0.645 0 | 0.847 7 | 0.891 4 | 0.741 6 |
CFR | 0.682 9 | 0.628 6 | 0.790 6 | 0.882 2 | 0.763 7 | 0.630 8 | 0.695 7 | 0.661 7 | 0.858 7 | 0.909 6 | 0.750 5 |
"
算法 | Mfeat_zer | Movement_libras | Musk1 | Mfeat_fac | Mfeat_pix | Semeion | Isolet | ORL | WarpPIE10P | gisette | 均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
DWUR | 0.748 3 | 0.708 0 | 0.828 9 | 0.929 5 | 0.870 4 | 0.814 6 | 0.825 5 | 0.783 3 | 0.938 1 | 0.941 1 | 0.838 8 |
DWFS | 0.744 2 | 0.697 1 | 0.823 7 | 0.919 8 | 0.847 4 | 0.770 0 | 0.832 5 | 0.770 7 | 0.907 8 | 0.922 4 | 0.823 6 |
IWFS | 0.739 2 | 0.695 7 | 0.820 7 | 0.910 9 | 0.791 1 | 0.651 7 | 0.740 9 | 0.765 7 | 0.901 3 | 0.906 1 | 0.792 3 |
CMI | 0.739 4 | 0.708 1 | 0.829 8 | 0.935 2 | 0.873 1 | 0.789 3 | 0.804 2 | 0.754 6 | 0.903 2 | 0.938 1 | 0.825 7 |
CIFE | 0.739 5 | 0.695 1 | 0.812 3 | 0.904 5 | 0.807 8 | 0.657 5 | 0.760 7 | 0.765 9 | 0.903 5 | 0.898 1 | 0.794 5 |
JMI | 0.737 8 | 0.683 5 | 0.812 2 | 0.917 0 | 0.846 0 | 0.736 3 | 0.717 3 | 0.722 8 | 0.893 2 | 0.915 5 | 0.798 1 |
JMIM | 0.739 1 | 0.695 8 | 0.814 9 | 0.923 0 | 0.851 5 | 0.777 8 | 0.729 3 | 0.734 2 | 0.896 2 | 0.907 7 | 0.806 9 |
CFR | 0.739 3 | 0.683 1 | 0.815 7 | 0.923 3 | 0.852 8 | 0.743 0 | 0.787 9 | 0.750 3 | 0.894 3 | 0.925 0 | 0.811 5 |
[1] | 朱虎明, 焦李成 . 并行免疫克隆特征选择算法[J]. 西安电子科技大学学报, 2008,35(5):853-857. |
ZHU Huming, JIAO Licheng . Parallel Immune Clonal Selection for Feature Selection[J]. Journal of Xidian University, 2008,35(5):853-857. | |
[2] | ZHENG K F, WANG X . Feature Selection Method with Joint Maximal Information Entropy between Features and Class[J]. Pattern Recognition, 2018,77:20-29. |
[3] | ZHOU H F, ZHANG Y, ZHANG Y J , et al. Feature Selection Based on Conditional Mutual Information: Minimum Conditional Relevance and Minimum Conditional Redundancy[J]. Applied Intelligence, 2019,49(3):883-896. |
[4] | GAO W, HU L, ZHANG P . Class-specific Mutual Information Variation for Feature Selection[J]. Pattern Recognition, 2018,79:328-339. |
[5] | LI K W, YU M X, LIU L , et al. Feature Selection Method Based on Weighted Mutual Information for Imbalanced Data[J]. International Journal of Software Engineering and Knowledge Engineering, 2018,28(8):1177-1194. |
[6] | VERGARA J R, ESTEVEZ P A . A Review of Feature Selection Methods Based on Mutual Information[J]. Neural Computing and Applications, 2014,24(1):175-186. |
[7] | SHARMIN S, SHOYAIB M, ALI A A , et al. Simultaneous Feature Selection and Discretization Based on Mutual Information[J]. Pattern Recognition, 2019,91:162-174. |
[8] | LEWIS D D . Feature Selection and Feature Extraction for Text Categorization[C]// Proceedings of the 1992 Workshop on Speech and Natural Language. New York: Association for Computational Linguistics, 1992: 212-217. |
[9] | BATTITI R . Using Mutual Information for Selecting Features in Supervised Neural Net Learning[J]. IEEE Transactions on Neural Networks, 1994,5(4):537-550. |
[10] | PENG H, LONG F, DING C . Feature Selection Based on Mutual Information: Criteria of Max-dependency, Max-relevance, and Min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(8):1226-1238. |
[11] | FOITHONG S, PINNGERN O, ATTACHOO B . Feature Subset Selection Wrapper Based on Mutual Information and Rough Sets[J]. Expert Systems with Applications, 2012,39(1):574-584. |
[12] | SUN X, LIU Y, XU M , et al. Feature Selection Using Dynamic Weights for Classification[J]. Knowledge-Based Systems, 2013,37:541-549. |
[13] | ZENG Z, ZHANG H, ZHANG R , et al. A Novel Feature Selection Method Considering Feature Interaction[J]. Pattern Recognition, 2015,48(8):2656-2666. |
[14] | LI J, CHENG K, WANG S , et al. Feature Selection: a Data Perspective[J]. ACM Computing Surveys, 2017,50(6):94. |
[15] | YANG H H, MOODY J . Feature Selection Based on Joint Mutual Information[C]// Proceedings of the 1999 International ICSC Symposium on Advances in Intelligent Data Analysis. Heidelberg: Springer, 1999: 22-25. |
[16] | LIN D, TANG X . Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion[C]// Lecture Notes in Computer Science: 3951. Heidelberg: Springer Verlag, 2006: 68-82. |
[17] | BENNASAR M, HICKS Y, SETCHI R . Feature Selection Using Joint Mutual Information Maximisation[J]. Expert Systems with Applications, 2015,42(22):8520-8532. |
[18] | GAO W, HU L, ZHANG P , et al. Feature Selection Considering the Composition of Feature Relevancy[J]. Pattern Recognition Letters, 2018,112:70-74. |
[1] | ZHOU Jianyu,WEI Yinsheng,XU Rongqing. Improved ionospheric clutter classification method based on fuzzy C-means clustering [J]. Journal of Xidian University, 2021, 48(2): 35-41. |
[2] | DUAN Chongdi,HAN Chaolei,YANG Zhiwei,ZHANG Qingjun. Inshore ambiguity clutter suppression method aided by clutter classification [J]. Journal of Xidian University, 2021, 48(2): 64-71. |
[3] | LI Shan,ZHNAG Kun,SHUI Penglang. Ship length distribution modeling on China offshore and ability evaluation of radar ship classification [J]. Journal of Xidian University, 2021, 48(2): 84-91. |
[4] | LIU Jingmei,GAO Yuanbo. Fast network intrusion detection system using adaptive binning feature selection [J]. Journal of Xidian University, 2021, 48(1): 176-182. |
[5] | SONG Jiawei,ZHENG Huijuan,TONG Sheng. Method for designing CRC-Polar codes to improve minimum distances [J]. Journal of Xidian University, 2020, 47(6): 72-77. |
[6] | LI Hai,SHANG Jinlei,SUN Tingyi,FENG Qing,ZHUANG Zibo. Method for hydrometeor classification based on MC-DTSVMs [J]. Journal of Xidian University, 2020, 47(4): 132-140. |
[7] | LIU Daohua,WANG Shasha,YANG Zhipeng,CUI Yushuang. Improved face image classification method based on the local embedding network [J]. Journal of Xidian University, 2020, 47(4): 18-23. |
[8] | LI Jiang,FENG Cunqian,WANG Yizhe,XU Xuguang. Deep learning model for micro-motion classification of cone targets [J]. Journal of Xidian University, 2020, 47(3): 105-112. |
[9] | ZHANG Zhichang,ZHANG Zhiman,ZHANG Zhenwen. Classifying health questions with local semantic and global structural information [J]. Journal of Xidian University, 2020, 47(2): 9-15. |
[10] | YAN Lin,LIU Kai,DUAN Meiyu. Lightweight deep neural network for point cloud classification [J]. Journal of Xidian University, 2020, 47(2): 46-53. |
[11] | SONG Jianfeng,WEI Yue,MIAO Qiguang,QUAN Yining,CHEN Yusheng. Urine cell image classification algorithm based on the squeeze and excitation mechanism [J]. Journal of Xidian University, 2020, 47(2): 39-45. |
[12] | CAO Yi,HUANG Zilong,ZHANG Wei,LIU Chen,LI Wei. Urban sound event classification with the N-order dense convolutional network [J]. Journal of Xidian University, 2019, 46(6): 9-16. |
[13] | YANG Hongyu,NA Yuzhuo. Android malware detection model [J]. Journal of Xidian University, 2019, 46(3): 45-51. |
[14] | JIANG Xingguo,WAN Jinzhao,CAI Xiaodong,LI Haiou,CAO Yi. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric [J]. Journal of Xidian University, 2019, 46(3): 82-88. |
[15] | SUN Chen, CHENG Liye. Spatial sensing matrix learning for PolSAR image classification [J]. Journal of Xidian University, 2018, 45(6): 92-98. |
|