Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (3): 105-112.doi: 10.19665/j.issn1001-2400.2020.03.015
Previous Articles Next Articles
LI Jiang1,FENG Cunqian1,2,WANG Yizhe1,XU Xuguang1
Received:
2019-10-13
Online:
2020-06-20
Published:
2020-06-19
CLC Number:
LI Jiang,FENG Cunqian,WANG Yizhe,XU Xuguang. Deep learning model for micro-motion classification of cone targets[J].Journal of Xidian University, 2020, 47(3): 105-112.
[1] | CHEN V C. Analysis of Radar Micro-Doppler Signature with Time-frequency Transform [C]//Proceedings of the 2000 10th IEEE Workshop on Statistical Signal and Array Processing. Piscataway: IEEE, 2000: 463-466. |
[2] |
CHEN V C, LI F, HO S S, et al. Analysis of Micro-Doppler Signatures[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003,150(4):271-276.
doi: 10.1049/ip-rsn:20030743 |
[3] | WANG Y Z, ZHANG Y S, HE S S, et al. Precession Parameters Estimation of Space Rotationally Symmetric Targets Based on HRRP Sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018,E101A(9):1580-1584. |
[4] |
韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类[J]. 系统工程与电子技术, 2013,35(4):684-691.
doi: 10.3969/j.issn.1001-506X.2013.04.02 |
HAN Xun, DU Lan, LIU Hongwei, et al. Classfifcation of Micro Motion form of Space Cone Shaped Objects Based on Time-frequency Distribution[J]. Systems Engineering and Electronics, 2013,35(4):684-691.
doi: 10.3969/j.issn.1001-506X.2013.04.02 |
|
[5] | 关永胜, 左群声, 刘宏伟, 等. 空间锥体目标微动特性分析与识别方法[J]. 西安电子科技大学学报, 2011,38(2):105-111. |
GUAN Yongsheng, ZUO Qunsheng, LIU Hongwei, et al. Micro-motion Characteristic Analysis and Recognition of Cone-shaped Targets[J]. Journal of Xidian University, 2011,38(2):105-111. | |
[6] | 束长勇, 张生俊, 黄沛霖, 等. 基于微多普勒的空间锥体目标微动分类[J]. 北京航空航天大学学报, 2017,43(7):1387-1394. |
SHU Changyong, ZHANG Shengjun, HUANG Peilin, et al. Micro-motion Classification of Spatial Cone Target Based on Micro-Doppler[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017,43(7):1387-1394. | |
[7] | 刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019,46(5):15-23. |
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-resolution Reconstruction[J]. Journal of Xidian University, 2019,46(5):15-23. | |
[8] |
YUEK, YANG L, LI R R, et al. TreeUNet: Adaptive Tree Convolutional Neural Networks for Subdecimeter Aerial Image Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,156(10):1-13.
doi: 10.1016/j.isprsjprs.2019.07.007 |
[9] | 王世平, 毕笃彦, 刘坤, 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160. |
WANG Shiping, BI Duyuan, LIU Kun, et al. Multi Mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160. | |
[10] |
YANG Y, HOU C P, LANG Y, et al. Person Identification Using Micro-Doppler Signatures of Human Motions and UWB Radar[J]. IEEE Microwave and Wireless Components Letters, 2019,29(5):366-368.
doi: 10.1109/LMWC.7260 |
[11] |
CAO P B, XIA W J, YE M, et al. Radar-ID: Human Identification Based on Radar Micro-Doppler Signatures Using Deep Convolutional Neural Networks[J]. IET Radar, Sonar and Navigation, 2018,12(7):729-734.
doi: 10.1049/iet-rsn.2017.0511 |
[12] |
SKARIA S, AI-HOURANI A, LECH M, et al. Hand-gesture Recognition Using Two-antenna Doppler Radar with Deep Convolutional Neural Networks[J]. IEEE Sensors Journal, 2019,19(8):3041-3048.
doi: 10.1109/JSEN.2019.2892073 |
[13] |
PAN M, JIANG J, KONG Q, et al. Radar HRRP Target Recognition Based on t-SNE Segmentation and Discriminant Deep Belief Network[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(9):1609-1613.
doi: 10.1109/LGRS.2017.2726098 |
[14] | 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018,7(5):565-574. |
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018,7(5):565-574. | |
[15] |
DONG Y B, ZHANG H, WANG C, et al. Fine-grained Ship Classification Based on Deep Residual Learning for High-resolution SAR Images[J]. Remote Sensing Letters, 2019,10(11):1095-1104.
doi: 10.1080/2150704X.2019.1650982 |
[16] |
WEN Z G, LIU D, LIU X Q, et al. Deep Learning Based Smart Radar Vision System for Object Recognition[J]. Journal of Ambient Intelligence and Humanized Computing, 2019,10(3):829-839.
doi: 10.1007/s12652-018-0853-9 |
[17] |
LIU W B, YUAN J W, ZHANG G, et al. HRRP Target Recognition Based on Kernel Joint Discriminant Analysis[J]. Journal of Systems Engineering and Electronics, 2019,30(4):703-708.
doi: 10.21629/JSEE.2019.04.08 |
[18] | 徐彬, 陈渤, 刘家麒, 等. 采用双向LSTM模型的雷达HRRP目标识别[J]. 西安电子科技大学学报, 2019,46(2):29-34. |
XU Bin, CHEN Bo, LIU Jiaqi, et al. Radar HRRP Target Recognition by the Bidirectional LSTM Model[J]. Journal of Xidian University, 2019,46(2):29-34. | |
[19] | WANG Y Z, FENG C Q, ZHANG Y S, et al. Classification of Space Targets with Micro-Motion Based on Deep CNN [C]//Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology. Piscataway: IEEE, 2019: 557-561. |
[20] |
WANG J, ZHU H, LEI P, et al. CNN Based Classification of Rigid Targets in Space Using Radar Micro-Doppler Signatures[J]. Chinese Journal of Electronics, 2019,28(4):856-862.
doi: 10.1049/cje.2018.08.003 |
[21] | AINUJAIM I, OH D, PARK I, et al. Classification of Micro-Doppler Signatures Measured by Doppler Radar Through Transfer Learning [C]//Proceedings of the 2019 13th European Conference on Antennas and Propagation. Piscataway: IEEE, 2019: 8740208. |
[22] | HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition [C]//Proceedings of the 2016 IEEE Computer Society Conference on Compute Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778. |
[23] | SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions [C]//Proceedings of the 2015 IEEE Computer Society Conference on Compute Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9. |
[24] |
BENGIO Y, SIMARD P, FRASCONI P. Learning Long-Term Dependencies with Gradient Descent is Difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2):157-166.
doi: 10.1109/TNN.72 |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[8] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[11] | SUN Zhengyang,DONG Mei,CHEN Baixiao. Interrupted sampling repeater jamming suppression based on time-frequency analysis and band-pass filtering [J]. Journal of Xidian University, 2021, 48(2): 139-146. |
[12] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[13] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[14] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
[15] | HU Jianwei,ZHAO Wei,CUI Yanpeng,CUI Junjie. PHP code vulnerability mining technology based on theimproved ASTNN [J]. Journal of Xidian University, 2020, 47(6): 164-173. |
|