Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (1): 149-159.doi: 10.19665/j.issn1001-2400.2021.01.017
Previous Articles Next Articles
ZHANG Hua(),GAO Haoran(),YANG Xingguo(),LI Wenmin(),GAO Fei(),WEN Qiaoyan()
Received:
2020-11-02
Online:
2021-02-20
Published:
2021-02-03
Contact:
Haoran GAO
E-mail:zhanghua_288@bupt.edu.cn;haorangao@bupt.edu.cn;yangxingg@bupt.edu.cn;liwenmin02@outlook.com;gaof@bupt.edu.cn;wqy@bupt.edu.cn
CLC Number:
ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks[J].Journal of Xidian University, 2021, 48(1): 149-159.
"
分类器 | Top-1 error/% | Top-5 error/% | 迭代次数 | 时间/s | 扰动量 | |
---|---|---|---|---|---|---|
DenseNet-121 | 25.35 | 7.83 | 10 | 1.13 | 5.26 | 7.80×10-3 |
Inception-v3 | 22.55 | 6.44 | 32 | 3.01 | 5.58 | 1.19×10-2 |
ResNet-152 | 21.69 | 5.94 | 12 | 1.58 | 3.85 | 9.18×10-3 |
ResNet-34 | 26.70 | 8.58 | 10 | 0.45 | 3.83 | 9.04×10-3 |
VGG-19[ | 27.62 | 9.12 | 13 | 0.71 | 3.59 | 8.40×10-3 |
VGG-16 | 28.41 | 9.62 | 12 | 0.63 | 3.42 | 7.99×10-3 |
[1] | CHENG S, DONG Y, PANG T, et al. Improving Black-box Adversarial Attacks with a Transfer-based Prior[C/OL].[2020-10-22].https://arxiv.org/abs/1906.06919. |
[2] | ZHAO Z, DUA D, SINGH S. Generating Natural Adversarial Examples[C/OL] [2020-10-22].https://openreview.net/pdf?id=H1BLjgZCb. |
[3] | IIYAS A, ENGSTROM L, ATHALYE A, et al. Black-box Adversarial Attacks with Limited Queries and Information[C/OL].[2020-10-22].https://arxiv.org/pdf/1804.08598.pdf. |
[4] | IIYAS A, ENGSTROM L, MADRY A. Prior Convictions:Black-box Adversarial Attacks with Bandits and Priors[C/OL].[2020-10-22].https://arxiv.org/pdf/1807.07978.pdf. |
[5] | GUO C, GARDNER J R, YOU Y, et al. Simple Black-box Adversarial Attacks[C/OL].[2020-10-22].https://arxiv.org/abs/1905.07121. |
[6] | GOODFELLOW I J, SHLENS J, SZEGEDY C.Explaining and Harnessing Adversarial Examples[C/OL].[2020-10-22].https://arxiv.org/pdf/1412.6572.pdf. |
[7] | MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. Deepfool:a Simple and Accurate Method to Fool Deep Neural Networks [C] //Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016: 2574-2582. |
[8] | THYS S, VAN RANST W, GOEDEME T. Fooling Automated Surveillance Cameras:Adversarial Patches to Attack Person Detection[C/OL].[2020-10-22].https://arxiv.org/abs/1904.08653v1. |
[9] | LI J, JI S, DU T, et al. TextBugger:Generating Adversarial Text against Real-world Applications[C/OL].[2020-10-22].https://arxiv.org/pdf/1812.05271.pdf. |
[10] | BRENDEL W, RAUBER J, BETHGE M. Decision-based Adversarial Attacks:Reliable Attacks against Black-box Machine Learning Models[C/OL].[2020-10-22].https://arxiv.org/pdf/1712.04248.pdf. |
[11] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[C/OL].[2020-10-22].https://arxiv.org/abs/1312.6199. |
[12] | OREN S S. On the Selection of Parameters in Self Scaling Variable Metric Algorithms[J]. Mathematical Programming, 1974,7(1):351-367. |
[13] | KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial Examples in the Physical World[C/OL].[2020-10-22].https://arxiv.org/abs/1607.02533. |
[14] | PAPERNOT N, MC DANIEL P, JHA S, et al. The Limitations of Deep Learning in Adversarial Settings[C/OL].[2020-10-22].https://arxiv.org/pdf/1511.07528.pdf. |
[15] | MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal Adversarial Perturbations [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017: 1765-1773. |
[16] | ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow:Large-scale Machine Learning on Heterogeneous Distributed Systems[EB/OL].[2020-10-16].https://arxiv.org/pdf/1603.04467v1.pdf. |
[17] | PAPERNOT N, GOODFELLOW I, SHEATSLEY R, et al. Cleverhans v2.0.0:an Adversarial Machine Learning Library[EB/OL].[2020-10-20].https://arxiv.org/pdf/1610.00768v4.pdf. |
[18] | LECUN Y, CORTES C. The MNIST database of handwritten digits[EB/OL].[2020-10-20].https://www.researchgate.net/publication/247931959_The_mnist_database_of_handwritten_digits. |
[19] | KRIZHEVSKY A.Learning Multiple Layers of Features from Tiny Images[D/OL].[ 2020- 10- 16]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A53249D656707B0A5E27DEC73ABF8B2?doi=10.1.1.222.9220&rep=rep1&type=pdf. |
[20] | DENG J, DONG W, SOCHER R, et al. Imagenet:a Large-scale Hierarchical Image Database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2009: 248-255. |
[21] | LECUN Y, HAFFNER P, BOTTOU L, et al. Object Recognition with Gradient-based Learning [C]// Lecture Notes in Computer Science:1681.Berlin:Springer Verlag, 1999: 319-345. |
[22] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks [C]//Advances in Neural Information Processing Systems:2.Vancouver:Neural Information Processing Systems Foundation, 2012: 1097-1105. |
[23] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society, 2016: 2818-2826. |
[24] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition [C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society, 2016: 770-778. |
[25] | HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely Connected Convolutional Networks [C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017: 2261-2269. |
[26] |
YUAN X, HE P, ZHU Q, et al. Adversarial Examples:Attacks and Defenses for Deep Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(9):2805-2824.
doi: 10.1109/TNNLS.2018.2886017 pmid: 30640631 |
[27] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition [C]// Proceedings of the 2015 3rd International Conference on Learning Representations.San Diego:ICLR, 2015: 149801. |
[28] | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial Machine Learning at Scale [C]// Proceedings of the 2017 5th International Conference on Learning Representations.San Diego:ICLR, 2017: 149804. |
[29] | PAPERNOT N, MCDANIEL P, WU X, et al. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks [C]// Proceedings of the 2016 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2016: 582-597. |
[30] | SAMANGOUEI P, KABKAB M, CHELLAPPA R. Defense-GAN:Protecting Classifiers against Adversarial Attacks Using Generative Models [C]// Proceedings of the 2018 6th International Conference on Learning Representations.San Diego:ICLR, 2018: 149806. |
[1] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[2] | WANG Yong,WANG Xiyuan,REN Zeyang. Algorithm for gradient optimization of hybrid precoding based on DNN in the millimeter wave MIMO system [J]. Journal of Xidian University, 2022, 49(1): 202-207. |
[3] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[4] | ZHANG Yan,WANG Xiangyu,ZHANG Zhongwei,SUN Yemei,LIU Shudong. Boundary-aware network for building extraction from remote sensing images [J]. Journal of Xidian University, 2022, 49(1): 236-244. |
[5] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[6] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[7] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[10] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[11] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[12] | ZHANG Shuwei,LI Junmin. Human body detection algorithm in complex monitoring scenes [J]. Journal of Xidian University, 2021, 48(5): 68-77. |
[13] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[14] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[15] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
|