Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (4): 200-208.doi: 10.19665/j.issn1001-2400.2021.04.026
• Computer Science and Technology & Cyberspace Security • Previous Articles
HUI Haisheng(),ZHANG Xueying,WU Zelin(),LI Fenglian()
Received:
2020-07-24
Online:
2021-08-30
Published:
2021-08-31
CLC Number:
HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network[J].Journal of Xidian University, 2021, 48(4): 200-208.
"
模型名称 | 损失函数 | DSC/% | F2/% | PRE/% | RE/% | 参数/万个 | 训练/h | 预测/s |
---|---|---|---|---|---|---|---|---|
U-Net | WBCE-Tversky loss (β=0.8) | 50.89 | 49.21 | 59.35 | 48.77 | 3 452 | 5.67 | 1.18 |
Attention U-Net | WBCE-Tversky loss (β=0.8) | 52.12 | 55.63 | 62.62 | 56.28 | 3 732 | 8.50 | 3.71 |
GAU-A-UNet | WBCE-Tversky loss (β=0.8) | 53.60 | 56.46 | 59.95 | 54.89 | 3 508 | 6.05 | 1.24 |
D-UNet | Enhance Mixing Loss | 53.50 | 63.30 | 52.40 | ||||
CLCI-NET | Dice loss | 58.10 | 64.90 | 58.10 | ||||
PAPAC-Net | 主网络用WBCE-Tversky loss (β=0.8) 辅网络用Tolerance loss (δ=0.7,λ=4) | 58.82 | 59.34 | 63.83 | 61.86 | 7 010 | 11.75 | 4.01 |
"
模型名称 | 损失函数 | DSC/% | F2/% | PRE/% | RE/% |
---|---|---|---|---|---|
U-Net | WBCE-Tversky loss (β=0.7) | 47.85 | 48.21 | 57.11 | 46.66 |
Attention U-Net | WBCE-Tversky loss (β=0.7) | 50.69 | 53.44 | 58.09 | 52.36 |
GAU-A-UNet | WBCE-Tversky loss (β=0.7) | 50.51 | 55.32 | 57.86 | 55.23 |
StrokeNet | Focal Loss | 52.26 | 58.84 | 56.50 | |
PAPAC-Net | 主网络用WBCE-Tversky loss (β=0.7) 辅网络用Tolerance loss (δ=0.8,λ=4) | 53.22 | 56.23 | 58.76 | 58.25 |
[1] |
THRIFT A G, CADILHAC D A, THAYABARANATHAN T, et al. Global Stroke Statistics[J]. International Journal of Stroke, 2013, 9(1):6-18.
doi: 10.1111/ijs.12245 |
[2] | HERON M. Deaths:Leading Causes for 2015[J]. Natl.Vital Stat.Rep, 2017, 66(5):1-76. |
[3] |
LIEW S L, ANGLIN J M, BANKS N W, et al. A Large,Open Source Dataset of Stroke Anatomical Brain Images and Manual Lesion Segmentations[J]. Scientific Data, 2018, 5:180011.
doi: 10.1038/sdata.2018.11 |
[4] | 刘如意, 宋建锋, 权义宁, 等. 一种自动的高分辨率遥感影像道路提取方法[J]. 西安电子科技大学学报, 2017, 44(1):100-105. |
LIU Ruyi, SONG Jianfeng, QUAN Yining, et al. Automatic Road Extraction Method for High-resolution Remote Sensing Images[J]. Journal of Xidian University, 2017, 44(1):100-105. | |
[5] | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2):440-468. |
TIAN Xuan, WANG Liang, DING Qi. A Rewiew of Image Semantic Segmentation Methods Based on Deep Learning[J]. Journal of Software, 2019, 30(2):440-468. | |
[6] | RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on MedicalImage Computing And Computer-assisted Intervention.Heidelberg:Springer, 2015:234-241. |
[7] |
SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images[J]. Medical Image Analysis, 2019, 53:197-207.
doi: 10.1016/j.media.2019.01.012 |
[8] | LI H, XIONG P, AN J, et al. Pyramid Attention Network for Semantic Segmentation[J/OL].[2018-5-25].https://arxiv.org/abs/1805.10180 . |
[9] | SUDRE C H, Li W, VERCAUTEREN T, et al. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Heidelberg:Springer, 2017:240-248. |
[10] | ZHANG M R, LUCAS J, HINTON G, et al. Lookahead Optimizer:k Steps Forward,1 Step Back[C]// Advances in Neural Information Processing Systems 32 (NeurIPS 2019).Vancouver:Neural Information Processing Systems Foundation Inc, 2019:9597-9608. |
[11] | ZHOU Y, HUANG W, DONG P, et al. D-UNet:a Dimension-fusion U Shape Network for Chronic Stroke Lesion Segmentation[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019(99):1. |
[12] | YANG H, HUANG W, QI K, et al. CLCI-Net:Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2019:266-274. |
[13] |
HU X, LUO W, HU J, et al. Brain SegNet:3D Local Refinement Network for Brain Lesion Segmentation[J]. BMC Medical Imaging, 2020, 20(1):17.
doi: 10.1186/s12880-020-0409-2 |
[14] | HU X, HUANG W, GUO S, et al. StrokeNet:3D Local Refinement Network for Ischemic Stroke Lesion Segmentation[DB/OL].[2019-10-15].http://www.isles-challenge.org/articles/Xiaojun_Hu.pdf . |
[15] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017:2980-2988. |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | SHI Jiahui,HAO Xiaohui,LI Yanni. Efficient self-supervised meta-transfer algorithm for few shot learning [J]. Journal of Xidian University, 2021, 48(6): 48-56. |
[3] | GU Zhaojun,CHEN Hui,WANG Jialiang,GAO Bing. Target tracking control algorithm for small size quad-rotor helicopter [J]. Journal of Xidian University, 2021, 48(5): 117-127. |
[4] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[5] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[6] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[7] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[8] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[9] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[10] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[11] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[12] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[13] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[14] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[15] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
|