Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (3): 115-122.doi: 10.19665/j.issn1001-2400.2021.03.015
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
SUN Haojie(),LI Miaoyu(),ZHANG Panpan(),XU Pengfei()
Received:
2021-02-24
Online:
2021-06-20
Published:
2021-07-05
Contact:
Pengfei XU
E-mail:201921033@stumail.nwu.edu.cn;2018117349@stumail.nwu.edu.cn;1154531259@qq.com;pfxu@nwu.edu.cn
CLC Number:
SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis[J].Journal of Xidian University, 2021, 48(3): 115-122.
"
方法 | 评估指标 | |||
---|---|---|---|---|
准确率 | 平均精度 | 召回率 | F1 | |
Gabor+SVM | 0.608 7 | 0.673 1 | 0.544 6 | 0.580 1 |
LBP+SVM | 0.648 8 | 0.567 3 | 0.542 3 | 0.501 8 |
GoogleNet | 0.567 5 | 0.595 8 | 0.601 4 | 0.593 6 |
VGG-16 | 0.638 9 | 0.658 0 | 0.629 2 | 0.634 6 |
Resnet 34 | 0.628 6 | 0.672 6 | 0.687 6 | 0.641 9 |
Resnet 50 | 0.666 7 | 0.686 2 | 0.681 4 | 0.679 0 |
Resnet 101 | 0.657 1 | 0.727 9 | 0.630 6 | 0.654 4 |
CNN-FER | 0.388 9 | 0.578 6 | 0.388 8 | 0.4589 5 |
MicroExpSTCNN | 0.510 2 | 0.530 7 | 0.510 2 | 0.516 5 |
LSTM | 0.653 1 | 0.690 0 | 0.704 1 | 0.697 0 |
CNN-LSTM | 0.636 4 | 0.670 5 | 0.641 7 | 0.647 5 |
C3D | 0.842 8 | 0.861 3 | 0.842 1 | 0.847 0 |
C3D(自监督) | 0.890 8 | 0.898 5 | 0.899 5 | 0.896 6 |
R3D | 0.746 7 | 0.780 9 | 0.770 3 | 0.760 2 |
R3D(自监督) | 0.903 9 | 0.910 9 | 0.910 6 | 0.909 6 |
R(2+1)D | 0.816 6 | 0.808 0 | 0.811 7 | 0.825 8 |
R(2+1)D(自监督) | 0.851 5 | 0.843 4 | 0.853 1 | 0.847 8 |
[1] |
WANG T, ZHANG S, DONG J, et al. Automatic Evaluation of the Degree of Facial Nerve Paralysis[J]. Multimedia Tools and Applications, 2016,75(19):11893-11908.
doi: 10.1007/s11042-015-2696-0 |
[2] | 林杨. 面瘫患者面部运动功能自动分级方法研究[D]. 山东:中国海洋大学, 2008. |
[3] |
SONG A P, XU G L, DING X H, et al. Assessment for Facial Nerve Paralysis Based on Facial Asymmetry[J]. Australasian Physical and Engineering Sciences in Medicine, 2017,40(4):851-860.
doi: 10.1007/s13246-017-0597-4 |
[4] |
HE S, SORAGHAN J J, O'REILLY B F, et al. Quantitative Analysis of Facial Paralysis Using Local Binary Patterns in Biomedical Videos[J]. IEEE Transactions on Biomedical Engineering, 2009,56(7):1864-1870.
doi: 10.1109/TBME.2009.2017508 |
[5] | GUO Z, SHEN M, DUAN L, et al. Deep Assessment Process:Objective Assessment Process for Unilateral Peripheral Facial Paralysis Via Deep Convolutional Neural Network[C]// Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).Piscataway:IEEE, 2017: 135-138. |
[6] | YOSHIHARA H, SEO M, NGO T H, et al. Automatic Feature Point Detection Using Deep Convolutional Networks for Quantitative Evaluation of Facial Paralysis[C]// Proceedings of the 2016 9th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics(CISP-BMEI).Piscataway:IEEE, 2016: 811-814. |
[7] | 陈莉明, 邓德祥. 混合深度卷积神经网络对人脸年龄的分类[J]. 华中科技大学学报(自然科学版), 2019,47(03):104-108. |
CHEN L, DENG D. Face Age Classification Based on Hybrid Deep Convolution Neural Network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(03):104-108. | |
[8] | ALLEN Z Z, LI Y Z. What Can ResNet Learn Efficiently,Going Beyond Kernels?[C] Proceedings of the NeurIPS:Neural Information Processing Systems.Piscataway:IEEE, 2019: 9017-9028. |
[9] | 徐彬, 陈渤, 刘家麒, 等 .采用双向 LSTM 模型的雷达 HRRP 目标识别[J]. 西安电子科技大学学报, 2019,46(2):29-34. |
XU Bin, CHEN Bo, LIU Jiaqi, et al. Radar HRRP Target Recognition by the Bidirectional LSTM Model[J]. Journal of Xidian University, 2019,46(2):29-34. | |
[10] | XU P, WANG L, GUAN Z, et al. Evaluating Brush Movements for Chinese Calligraphy:a Computer Vision Based Approach[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence.Piscataway:IEEE, 2018: 1050-1056. |
[11] |
YAO G, LEI T, ZHONG J. A Review of Convolutional-Neural-Network-Based Action Recognition[J]. Pattern Recognition Letters, 2019,118:14-22.
doi: 10.1016/j.patrec.2018.05.018 |
[12] | EUSEBIO J M A. Convolutional Neural Networks for Facial Expression Recognition[C/OL]. [2020-12-12]. https://repository.asu.edu/items/37376. |
[13] | REDDY S P T, KARRI S T, DUBEY S R, et al. Spontaneous Facial Micro-Expression Recognition Using 3D Spatiotemporal Convolutional Neural Networks[C]// Proceedings of the 2019 International Joint Conference on Neural Networks(IJCNN).Piscataway:IEEE, 2019: 1-8. |
[14] | 梁晓曦, 蔡晓东, 王萌, 等. NRCNN 与角度度量融合的人脸识别方法[J]. 西安电子科技大学学报, 2018,45(6):144-149. |
LIANG Xiaoxi, CAI Xiaodong, WANG Meng, et al. Face Recognition Method for Integrating the Nested Residual CNN and Angular Metric[J]. Journal of Xidian University, 2018,45(6):144-149. | |
[15] | JING L, TIAN Y. Self-Supervised Visual Feature Learning with Deep Neural Networks:a Survey[J/OL]. [2020-12-12]. http://ieeexplore.ieee.org/document/9086055.doi:101109/TPAMI.2020.2992393. |
[16] |
SAMSUDIN W S W, SUNDARAJ K. Clinical and Non-Clinical Initial Assessment of Facial Nerve Paralysis:a Qualitative Review[J]. Biocybernetics and Biomedical Engineering, 2014,34(2):71-78.
doi: 10.1016/j.bbe.2014.02.005 |
[17] |
BANSAL M, SHAH A, GOSAI B, et al. A Simple,Objective,and Mathematical Grading Scale for the Assessment of Facial Nerve Palsy[J]. Otology and Neurotology, 2020,41(1):105-114.
doi: 10.1097/MAO.0000000000002450 |
[18] | LIU L, CHENG G, DONG J, et al. Evaluation of Facial Paralysis Degree Based on Regions[C]// Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining.Piscataway:IEEE, 2010: 514-517. |
[19] | MODERSOHN L, DENZLER J. Facial Paresis Index Prediction by Exploiting Active Appearance Models for Compact Discriminative Features[C]// Proceedings of the International Conference on Computer Vision Theory and Applications.Piscataway:IEEE, 2016: 271-278. |
[20] | MA L. Research into Assessment of Facial Paralysis Based on Key Points and Regions[D]. Shandong:Chinese Marine University, 2009. |
[21] | NGO T H, SEO M, CHEN Y W, et al. Quantitative Assessment of Facial Paralysis Using Local Binary Patterns and Gabor Filters[C]// Proceedings of the Fifth Symposium on Information and Communication Technology.Piscataway:IEEE, 2014: 155-161. |
[22] | NGO T H, SEO M, MATSUSHIRO N, et al. Quantitative Analysis of Facial Paralysis Based on Filters of Concentric Modulation[C]// Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD).Piscataway:IEEE, 2015: 1758-1763. |
[23] | NISHIDA T, CHEN Y W, MATSUSHIRO N, et al. An Image Based Quantitative Evaluation Method for Facial Paralysis[C]// Proceedings of the 2nd International Conference on Software Engineering and Data Mining.Piscataway:IEEE, 2010: 706-709. |
[24] |
BARBOSA J, LEE K, LEE S, et al. Efficient Quantitative Assessment of Facial Paralysis Using Iris Segmentation and Active Contour-Based Key Points Detection with Hybrid Classifier[J]. BMC Medical Imaging, 2016,16(1):23.
doi: 10.1186/s12880-016-0117-0 |
[25] | LIU X, DONG S, AN M, et al. Quantitative Assessment of Facial Paralysis Using Infrared Thermal Imaging[C]// Proceedings of the 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI).Piscataway:IEEE, 2015: 106-110. |
[26] | WANG X, HE K, GUPTA A. Transitive Invariance for Self-Supervised Visual Representation Learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017: 1338-1347. |
[27] | XU D, XIAO J, ZHAO Z, et al. Self-Supervised Spatiotemporal Learning Via Video Clip Order Prediction[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019: 10334-10343. |
[28] | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision.Piscataway:IEEE, 2015: 1440-1448. |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[11] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[12] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
[13] | HU Jianwei,ZHAO Wei,CUI Yanpeng,CUI Junjie. PHP code vulnerability mining technology based on theimproved ASTNN [J]. Journal of Xidian University, 2020, 47(6): 164-173. |
[14] | GUO Liujun,ZHANG Xueying,CHEN Guijun. Deep linear discriminant analysis for two-stage brain-controlled character spelling decoding [J]. Journal of Xidian University, 2020, 47(4): 109-116. |
[15] | DU Lizhao,XU Yan,ZHANG Wei. Phased smoke detection algorithm using dual network fusion [J]. Journal of Xidian University, 2020, 47(4): 141-148. |
|