Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (5): 15-22.doi: 10.19665/j.issn1001-2400.2021.05.003
Previous Articles Next Articles
ZHANG Yuhao1(),CHENG Peitao1(),ZHANG Shuhao1(),WANG Xiumei2()
Received:
2021-05-31
Online:
2021-10-20
Published:
2021-11-09
Contact:
Peitao CHENG
E-mail:zhangyuhaowork@outlook.com;chengpeitao@163.com;zhangshuha0@163.com;wangxm@xidian.edu.cn
CLC Number:
ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network[J].Journal of Xidian University, 2021, 48(5): 15-22.
"
方法 | 放大倍数 | 参数量 | Set5 (PSNR/SSIM) | Set14 (PSNR/SSIM) | BSD100 (PSNR/SSIM) | Urban100 (PSNR/SSIM) | |
---|---|---|---|---|---|---|---|
DRRN | ×2 | 298×103 | 37.74/0.959 1 | 33.23/0.913 6 | 32.05/0.897 3 | 31.23/0.918 8 | |
IDN | 553×103 | 37.83/0.960 0 | 33.30/0.914 8 | 32.08/0.898 5 | 31.27/0.919 6 | ||
CARN | 1 592×103 | 37.76/0.959 0 | 33.52/0.916 6 | 32.09/0.897 8 | 31.92/0.925 6 | ||
IMDN | 694×103 | 38.00/0.960 5 | 33.63/0.917 7 | 32.19/0.899 6 | 32.17/0.928 3 | ||
PAN | 261×103 | 37.95/0.960 7 | 33.59/0.917 3 | 32.15/0.900 1 | 31.97/0.927 0 | ||
LAWN | 454×103 | 38.03/0.961 0 | 33.64/0.918 3 | 32.19/0.900 5 | 32.17/0.928 4 | ||
DRRN | ×3 | 298×103 | 34.03/0.924 4 | 29.96/0.834 9 | 28.95/0.800 4 | 27.53/0.837 8 | |
IDN | 553×103 | 34.11/0.925 3 | 29.99/0.835 4 | 28.95/0.801 3 | 27.42/0.835 9 | ||
CARN | 1 592×103 | 34.29/0.925 5 | 30.29/0.840 7 | 29.06/0.803 4 | 28.06/0.849 3 | ||
IMDN | 703×103 | 34.36/0.927 0 | 30.32/0.841 7 | 29.09/0.804 6 | 28.17/0.851 9 | ||
PAN | 261×103 | 34.31/0.927 0 | 30.27/0.841 9 | 29.06/0.805 8 | 27.99/0.849 3 | ||
LAWN | 454×103 | 34.42/0.927 8 | 30.35/0.841 8 | 29.09/0.805 7 | 28.19/0.852 5 | ||
DRRN | ×4 | 298×103 | 31.68/0.888 8 | 28.21/0.772 0 | 27.38/0.728 4 | 25.44/0.763 8 | |
IDN | 553×103 | 31.82/0.890 3 | 28.25/0.773 0 | 27.41/0.729 7 | 25.41/0.763 2 | ||
CARN | 1 592×103 | 32.13/0.893 7 | 28.60/0.780 6 | 27.58/0.734 9 | 26.07/0.783 7 | ||
IMDN | 715×103 | 32.21/0.894 8 | 28.58/0.781 1 | 27.56/0.735 3 | 26.04/0.783 8 | ||
PAN | 272×103 | 31.77/0.891 3 | 28.39/0.778 7 | 27.45/0.734 1 | 25.64/0.772 1 | ||
LAWN | 465×103 | 32.21/0.896 4 | 28.56/0.781 7 | 27.56/0.737 3 | 26.11/0.786 8 |
[1] | 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213. |
SU Heng, ZHOU Jie, ZHANG Zhihao. Survey of Super-Resolution Image Reconstruction Methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213. | |
[2] | WANG Z H, CHEN J, HOI S C H. Deep Learning for Image Super-Rsolution:A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 45(10):3365-3387. |
[3] |
DONG C, LOY C C, HE K M, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 |
[4] | KIM J, LEE J K, LEE K M. Deeply-Recursive Convolutional Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1637-1645. |
[5] | ZHANG Y L, LI K P, LI K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]// Proceedings of the European Conference on Computer Vision (ECCV).Piscataway:IEEE, 2018:286-301. |
[6] | KIM J, LEE J K, LEEK M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1646-1654. |
[7] | LIM B, SON S, KIM H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:136-144. |
[8] | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual Dense Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:2472-2481. |
[9] | TAI Y, YANG J, LIU X. Image Super-Resolution Bia Deep Recursive Residual Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:3147-3155. |
[10] | 王世平, 毕笃彦, 刘坤, 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018, 45(4):155-160. |
WANG Shiping, BI Duyan, LIU Kun, et al. Multi-Mapping Convolution Neural Network for the Image Super-Resolution Algorithm[J]. Journal of Xidian University, 2018, 45(4):155-160. | |
[11] | SOH J W, CHO S, CHON I. Meta-Transfer Learning for Zero-Shot Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3516-3525. |
[12] | ZHANG K, GOOL L V, TIMOFTE R. Deep Unfolding Network for Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3217-3226. |
[13] | JO Y, KIM S J. Practical Single-Image Super-Resolution Using Look-Up Table[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:691-700. |
[14] | GU J, DONG C. Interpreting Super-Resolution Networks with Local Attribution Maps[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:9199-9208. |
[15] | SONG D, WANG Y, CHEN H, et al. Addersr:Towards Energy Efficient Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:15648-15657. |
[16] | HUI Z, LI J, WANG X, et al. Learning the Non-Differentiable Optimization for Blind Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:2093-2102. |
[17] | 刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019, 46(5):15-23. |
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-Resolution Reconstruction[J]. Journal of Xidian University, 2019, 46(5):15-23. | |
[18] | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:624-632. |
[19] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:4700-4708. |
[20] | HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7132-7141. |
[21] | DAI T, CAI J, ZHANG Y, et al. Second-Order Attention Network for SingleImage Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11065-11074. |
[22] | ZHANG Y, LI K, LI K, et al. Residual Non-local Attention Networks for Image Restoration[EB/OL]. [2019-03-24]. https://arxiv.org/pdf/1903.10082.pdf. |
[23] | WANG X, GIRSHICK R, GUPTA A, et al. Non-Local Neural Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7794-7803. |
[24] | NIU B, WEN W, REN W, et al. Single Image Super-Resolution via a Holistic Attention Network[C]// European Conference on Computer Vision.Berlin:Springer, 2020:191-207. |
[25] | AHN N, KANG B, SOHN K A. Fast,Accurate,and Lightweight Super-Resolution with Cascading Residual Network[C]// Proceedings of the European Conference on Computer Vision.Berlin:Springer, 2018:252-268. |
[26] | HUI Z, WANG X, GAOG X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:723-731. |
[27] | HUI Z, GAO X, YANG Y, et al. Lightweight Image Super-Resolution with Information Multi-Distillation Network[C]// Proceedings of the 27th ACM International Conference on Multimedia.New York:ACM, 2019:2024-2032. |
[28] | TAI Y, YANG J, LIU X, et al. Memnet:A Persistent Memory Network for Image Restoration[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:4539-4547. |
[29] | ZHAO H, KONG X, HE J, et al. Efficient Image Super-Resolution Using Pixel Attention[C]// European Conference on Computer Vision.Berlin:Springer, 2020:56-72. |
[30] | CHEN H, GU J, ZHANG Z. Attention in Attention Network for Image Super-Resolution[EB/OL]. [2021-04-19] et al. https://arxiv.org/pdf/2104.09497.pdf. |
[31] | CHEN Y, DAI X, LIU M, et al. Dynamic Convolution:Attention over Convolution Kernels[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:11030-11039. |
[32] | AGUSTSSON E, TIMOFTE R. Ntire 2017 Challenge on Single Image Super-Resolution:Dataset and Study[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:126-135. |
[33] | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding[C]// Proceedings of the 23rd British Machine Vision Conference.Surrey:BMVA, 2012: 135. |
[34] | ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-Up Using Sparse-Representations[C]// International Conference on Curves and Surfaces.Berlin:Springer, 2010:711-730. |
[35] | MARTIN D, FOWLKES C, TALS D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]// Proceedings Eighth IEEE International Conference on Computer Vision.Piscataway:IEEE, 2001:416-423. |
[36] | HUANG J B, SINGH A, AHUJA N. Single Image Super-Resolution from Transformed Self-Exemplars[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:5197-5206. |
[37] |
WANG Z, BOVIK A C, SHEIKHH R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
doi: 10.1109/TIP.2003.819861 |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | ZHAN Keyu,SUN Yue,LI Ying. Video super-resolution based on multi-scale 3D convolution [J]. Journal of Xidian University, 2021, 48(5): 8-14. |
[8] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[11] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[12] | DONG Xinfeng,ZHANG Wenzheng,XU Chunxiang. 8 bits lightweight S-box with the Feistel structure [J]. Journal of Xidian University, 2021, 48(1): 69-75. |
[13] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[14] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[15] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
|