[1] |
HARRIS J L. Diffraction and Resolving Power[J]. Journal of the Optical Society of America, 1964, 54(7):931-936.
doi: 10.1364/JOSA.54.000931
|
[2] |
MEIJERING E, UNSER M. A Note on Cubic Convolution Interpolation[J]. IEEE Transactions on Image Processing, 2003, 12(4):477-479.
doi: 10.1109/TIP.2003.811493
|
[3] |
CHANG K, ZHANG X, DING P L K, et al. Data-Adaptive Low-Rank Modeling and External Gradient Prior for Single Image Super-Resolution[J]. Signal Processing, 2019, 161:36-49.
doi: 10.1016/j.sigpro.2019.03.011
|
[4] |
YANG J, WRIGHT J, HUANG T, et al. Image Super-Resolution as Sparse Representation of Raw Image Patches[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2008:1-8.
|
[5] |
DONG C, LOY CC, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
|
[6] |
KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1646-1654.
|
[7] |
SHI W, CABALLERO J, HUSZAR F, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Piscatavay:IEEE, 2016:1874-1883.
|
[8] |
WANG X, GU Y, GAO X, et al. Dual Residual Attention Module Network for Single Image Super Resolution[J]. Neurocomputing, 2019, 364:269-279.
doi: 10.1016/j.neucom.2019.06.078
|
[9] |
刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019, 46(5):15-23.
|
|
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-Resolution Reconstruction[J]. Journal of Xidian University, 2019, 46(5):15-23.
|
[10] |
KAPPELER A, YOO S, DAI Q, et al. Video Super-Resolution with Convolutional Neural Networks[J]. IEEE Transactions on Computational Imaging, 2016, 2(2):109-122.
doi: 10.1109/TCI.2016.2532323
|
[11] |
CABALLERO J, LEDIG C, AITKEN A, et al. Real-Time Video Super-Resolution with Spatiotemporal Networks and Motion Compensation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:4778-4787.
|
[12] |
WANG L, GUO Y, LIN Z, et al. Learning for Video Super-Resolution Through HR Optical Flow Estimation[C]// Proceedings of the Asian Conference on Computer Vision.Heidelberg:Springer, 2018:514-529.
|
[13] |
TIAN Y, ZHANG Y, FU Y, et al. TDAN:Temporally-Deformable Alignment Network for Video Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3360-3369.
|
[14] |
KIM S Y, LIM J, NA T, et al. Video Super-Resolution Based on 3d-Cnns with Consideration of Sscene Change[C]// Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP).Piscataway:IEEE, 2019:2831-2835.
|
[15] |
ZHANG Y, TIAN Y, KONG Y, et al. Residual Dense Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:2472-2481.
|
[16] |
XUE T, CHEN B, WU J, et al. Video Enhancement with Task-Oriented Flow[J]. International Journal of Computer Vision, 2019, 127(8):1106-1125.
doi: 10.1007/s11263-018-01144-2
|
[17] |
LIU C, SUN D. A Bayesian Approach to Adaptive Video Super Resolution[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2011:209-216.
|