Journal of Xidian University ›› 2019, Vol. 46 ›› Issue (5): 15-23.doi: 10.19665/j.issn1001-2400.2019.05.003
Previous Articles Next Articles
LIU Shudong,WANG Xiaomin,ZHANG Yan()
Received:
2019-01-16
Online:
2019-10-20
Published:
2019-10-30
Contact:
Yan ZHANG
E-mail:zhangyan@tcu.edu.cn
CLC Number:
LIU Shudong,WANG Xiaomin,ZHANG Yan. Symmetric residual convolution neural networks for the image super-resolution reconstruction[J].Journal of Xidian University, 2019, 46(5): 15-23.
"
数据 集 | 采样 因子 | Bicubic (PSNR /SSIM) | A+ (PSNR /SSIM) | SRCNN (PSNR /SSIM) | VDSR (PSNR /SSIM) | DRCN (PSNR /SSIM) | LapSRN (PSNR /SSIM) | SymRCN (PSNR /SSIM) |
---|---|---|---|---|---|---|---|---|
Set5 | 33.66/0.929 9 | 36.54/0.954 4 | 36.66/0.954 2 | 37.53/0.958 7 | 37.63/0.958 8 | 37.52/0.959 1 | 37.83/0.9598 | |
30.39/0.868 2 | 32.58/0.908 8 | 32.75/0.909 0 | 33.66/0.921 3 | 33.82/0.922 6 | 33.81/0.922 0 | 34.00/0.924 6 | ||
28.42/0.810 4 | 30.28/0.860 3 | 30.48/0.862 8 | 31.35/0.883 8 | 31.53/0.885 4 | 31.54/0.885 2 | 31.53/0.885 5 | ||
Set14 | 30.24/0.868 8 | 32.28/0.905 6 | 32.42/0.906 3 | 33.03/0.912 4 | 33.04/0.911 8 | 32.99/0.912 4 | 33.22/0.913 7 | |
27.55/0.774 2 | 29.13/0.818 8 | 29.28/0.820 9 | 29.77/0.831 4 | 29.76/0.831 1 | 29.79/0.832 5 | 29.88/0.833 8 | ||
26.00/0.702 7 | 27.32/0.749 1 | 27.49/0.750 3 | 28.01/0.767 4 | 28.02/0.767 0 | 28.09/0.770 0 | 28.05/0.768 8 | ||
BSD100 | 29.56/0.843 1 | 31.21/0.886 3 | 31.36/0.887 9 | 31.90/0.896 0 | 31.85/0.894 2 | 31.80/0.895 2 | 32.01/0.897 4 | |
27.21/0.738 5 | 28.29/0.783 5 | 28.41/0.786 3 | 28.82/0.797 6 | 28.80/0.796 3 | 28.82/0.798 0 | 28.87/0.799 6 | ||
25.96/0.667 5 | 26.82/0.708 7 | 26.90/0.710 1 | 27.29/0.725 1 | 27.23/0.723 3 | 27.32/0.727 5 | 27.24/0.724 7 | ||
平均值 | 28.78/0.800 4 | 30.50/0.841 7 | 30.64/0.843 1 | 31.26/0.854 9 | 31.30/0.854 5 | 31.30/0.855 8 | 31.40/0.867 5 |
"
数据集 | 采样因子 | Bicubic | A+ | SRCNN | VDSR | DRCN | LapSRN | SymRCN |
---|---|---|---|---|---|---|---|---|
Set5 | 0.000 | 0.623 | 3.389 | 0.054 | 0.735 | 0.032 | 0.078 | |
0.000 | 0.400 | 3.405 | 0.062 | 0.748 | 0.049 | 0.040 | ||
0.000 | 0.281 | 3.496 | 0.054 | 0.735 | 0.040 | 0.027 | ||
Set14 | 0.000 | 1.370 | 5.134 | 0.113 | 1.579 | 0.035 | 0.142 | |
0.000 | 0.790 | 5.095 | 0.122 | 1.569 | 0.061 | 0.068 | ||
0.000 | 0.630 | 5.162 | 0.112 | 1.526 | 0.040 | 0.044 | ||
BSD100 | 0.000 | 0.921 | 3.992 | 0.071 | 0.983 | 0.018 | 0.092 | |
0.000 | 0.563 | 4.140 | 0.071 | 0.996 | 0.037 | 0.044 | ||
0.000 | 0.411 | 3.998 | 0.071 | 0.984 | 0.023 | 0.028 | ||
平均值 | 0.000 | 0.665 | 4.201 | 0.081 | 1.095 | 0.037 | 0.062 |
[1] | 胡长胜, 詹曙, 吴从中 . 基于深度特征学习的图像超分辨率重建[J]. 自动化学报, 2017,43(5):814-821. |
HU Changsheng, ZHAN Shu, WU Congzhong . Image Super-resolution Based on Deep Learning Features[J]. Acta Automatica Sinica, 2017,43(5):814-821. | |
[2] | 李欣, 韦宏卫, 张洪群 . 结合深度学习的单幅遥感图像超分辨率重建[J]. 中国图象图形学报, 2018,23(2):209-218. |
LI Xin, WEI Hongwei, ZHANG Hongqun . Super-resolution Reconstruction of Single Remote Sensing Image Combined with Deep Learning[J]. Journal of Image and Graphics, 2018,23(2):209-218. | |
[3] | REN H Y, EI-KHAMY M, LEE J . CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1423-1431. |
[4] | ZOU W W W, YUEN P C . Very Low Resolution Face Recognition Problem[J]. IEEE Transactions on Image Processing, 2012,21(1):327-340. |
[5] | KARRAS T, AILA T, LAINE S , et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation[CA/OL]. [2018-12-20].. |
[6] | HARRIS J L . Diffraction and Resolving Power[J]. Journal of the Optical Society of America, 1964,54(7):931-936. |
[7] | ZHU S, ZENG B, LIU G , et al. Image Interpolation Based on Non-local Geometric Similarities[C]// Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Washington: IEEE Computer Society, 2015: 7177417. |
[8] | ZHANG K, GAO X, TAO D , et al. Single Image Super-resolution with Non-local Means and Steering Kernel Regression[J]. IEEE Transactions on Image Processing, 2012,21(11):4544-4556. |
[9] | DONG C, LOY C C, HE K , et al. Image Super-resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307. |
[10] | 王世平, 毕笃彦, 刘坤 , 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160. |
WANG Shiping, BI Duyan, LIU Kun , et al. Multi-mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160. | |
[11] | YANG J C, WRIGHT J, HUANG T S , et al. Image Super-resolution as Sparse Representation of Raw Image Patches[C]// Proceedings of the 2008 26th IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2008: 4587647. |
[12] | YANG J C, WRIGHT J, HUANG T S , et al. Image Super-resolution via Sparse Representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873. |
[13] | TIMOFTE R, DE V, GOOL L V . Anchored Neighborhood Regression for Fast Example-based Super-resolution[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 1920-1927. |
[14] | TIMOFTE R, DE S V, VAN G L . A+: Adjusted Anchored Neighborhood Regression for Fast Super-resolution[C]// Lecture Notes in Computer Science: 9006. Heidelberg: Springer Verlag, 2015: 111-126. |
[15] | ZHANG H, PATEL V M . Densely Connected Pyramid Dehazing Network[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3194-3203. |
[16] | ZHANG H, PATEL V M . Density-aware Single Image De-raining Using a Multi-stream Dense Network[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 695-704. |
[17] | 张金刚, 方圆, 袁豪 , 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155. |
ZHANG Jingang, FANG Yuan, YUAN Hao , et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155. | |
[18] | 许强, 李伟, 占荣辉 , 等. 一种改进的卷积神经网络SAR目标识别算法[J]. 西安电子科技大学学报, 2018,45(5):177-183. |
XU Qiang, LI Wei, ZHAN Ronghui , et al. Improved Algorithm for SAR Target Recognition Based on the Convolutional Neural Network[J]. Journal of Xidian University, 2018,45(5):177-183. | |
[19] | KIM J, LEE J K, LEE K M . Accurate Image Super-resolution Using Very Deep Convolutional Networks[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1646-1654. |
[20] | KIM J, LEE J K, LEE K M . Deeply-recursive Convolutional Network for Image Super-resolution[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1637-1645. |
[21] | LAI W S, HUANG J B, AHUJA N , et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-resolution[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. |
[22] | TAI Y, YANG J, LIU X . Image Super-resolution via Deep Recursive Residual Network[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798. |
[23] | MAO X J, SHEN C H, YANG Y B . Image Restoration Using Very Deep Convolutional Encoder-decoder Networks with Symmetric Skip Connections[C]// Advances in Neural Information Processing Systems 29 - Proceedings of the 2016 Conference. Vancouver: Neural Information Processing Systems Foundation, 2016: 2810-2818. |
[24] | HE K, ZHANG X, REN S , et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778. |
[25] | 陈建廷, 向阳 . 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018,29(7):2071-2091. |
CHEN Jianting, XIANG Yang . Survey of Unstable Gradients in Deep Neural Network Training[J]. Journal of Software, 2018,29(7):2071-2091. | |
[26] | TAI Y, YANG J, LIU X . Image Super-resolution via Deep Recursive Residual Network[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798. |
[27] | LIM B, SON S, KIM H , et al. Enhanced Deep Residual Networks for Single Image Super-resolution[C]// Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington: IEEE Computer Society, 2017: 1132-1140. |
[28] | AHN N, KANG B, SOHN K A. Fast, Accurate , Lightweight Super-resolution with Cascading Residual Network[C]// Lecture Notes in Computer Science: 11214. Heidelberg: Springer Verlag, 2018: 256-272. |
[29] | ZHANG Y, LI K P, LI K , et al. Image Super-resolution Using Very Deep Residual Channel Attention Networks[C]// Lecture Notes in Computer Science: 11211. Heidelberg: Springer Verlag, 2018: 294-310. |
[30] | LI J C, FANG F M, MEI K F , et al. Multi-scale Residual Network for Image Super-resolution[C]// Lecture Notes in Computer Science: 11212. Heidelberg: Springer Verlag, 2018: 527-542. |
[31] | 孙跃文, 李立涛, 丛鹏 , 等. 基于深度学习的辐射图像超分辨率重建方法[J]. 原子能科学技术, 2017,51(5):890-895. |
SUN Yuewen, LI Litao, CONG Peng , et al. Super-resolution Method for Radiation Image Based on Deep Learning[J]. Atomic Energy Science and Technology, 2017,51(5):890-895. | |
[32] | MARTIN D, FOWLKES C, TAL D , et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]// Proceedings of the 2001 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423. |
[33] | JIA Y, SHELHAMER E, DONAHUE J , et al. Caffe: Convolutional Architecture for Fast Feature Embedding[C]// Proceedings of the 2014 ACM Conference on Multimedia. New York: ACM, 2014: 675-678. |
[34] | HUANG J B, SINGH A, AHUJA N . Single Image Super-resolution from Transformed Self-exemplars[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 5197-5206. |
[35] | 李浪宇, 苏卓, 石晓红 , 等. 图像超分辨率重建中的细节互补卷积模型[J]. 中国图象图形学报, 2018,23(4):572-582. |
LI Langyu, SU Zhuo, SHI Xiaohong , et al. Mutual-detail Convolution Model for Image Super-resolution Reconstruction[J]. Journal of Image and Graphics, 2018,23(4):572-582. | |
[36] | HE K, ZHANG X, REN S , et al. Delving Deep into Rectifiers: Surpassing Human-level Performance on Imagenet Classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034. |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[3] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[4] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[5] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[6] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[7] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[8] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[9] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[10] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[11] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[12] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[13] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[14] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
[15] | HU Jianwei,ZHAO Wei,CUI Yanpeng,CUI Junjie. PHP code vulnerability mining technology based on theimproved ASTNN [J]. Journal of Xidian University, 2020, 47(6): 164-173. |
|