Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (6): 23-31.doi: 10.19665/j.issn1001-2400.2021.06.004
• Special Issue:Key Technology of Architecture and Software for Intelligent Embedded Systems • Previous Articles Next Articles
LIU Jiawei(),ZHANG Wenhui(),KOU Xiaoli(),LI Yanni()
Received:
2021-06-30
Online:
2021-12-20
Published:
2022-02-24
Contact:
Xiaoli KOU,Yanni LI
E-mail:liujw@stu.xidian.edu.cn;wenhui110920@gmail.com;xlkou@xidian.edu.cn;yannili@mail.xidian.edu.cn
CLC Number:
LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring[J].Journal of Xidian University, 2021, 48(6): 23-31.
"
防御算法 | 样本 | |||||||
---|---|---|---|---|---|---|---|---|
干净样本 | FGSM(ε=4/8/16) | CW(ε=4/8/16) | BIM(ε=4/8/16) | |||||
VGG16 | ResNet18 | VGG16 | ResNet18 | VGG16 | ResNet18 | VGG16 | ResNet18 | |
无防御 | 92.6 | 93.2 | 80.3/64.6/46.1 | 82.8/67.6/45.2 | 83.5/77.0/69.3 | 84.5/76.2/70.3 | 82.7/57.1/30.9 | 83.2/55.1/31.5 |
NRP[ | 79.4 | 78.7 | 76.7/74.9/72.2 | 74.8/72.5/68.1 | 78.5/78.5/77.5 | 77.1/76.7/75.8 | 77.4/74.8/71.4 | 75.6/72.5/68.3 |
Fast AT[ | 81.5 | 83.8 | 88.1/78.7/56.0 | 89.0/79.1/55.0 | 91.8/90.8/87.8 | 91.2/90.7/87.4 | 90.1/90.8/87.1 | 91.0/90.7/87.5 |
ComDefend[ | 85.2 | 87.1 | 82.7/78.8/70.8 | 82.2/77.3/69.9 | 84.5/84.5/82.6 | 84.6/84.5/81.9 | 83.2/80.3/76.6 | 84.0/79.8/74.9 |
FS[ | 91.0 | 92.0 | 82.5/65.3/48.8 | 83.4/66.7/49.1 | 89.5/88.1/83.3 | 89.7/88.9/82.7 | 85.2/62.2/41.6 | 86.3/66.9/43.9 |
JPEG[ | 71.0 | 74.1 | 66.6/63.0/54.3 | 66.2/64.1/55.0 | 70.1/69.8/68.2 | 69.9/69.9/68.5 | 67.5/64.2/60.2 | 68.2/63.1/59.4 |
JPEG[ | 80.2 | 82.3 | 74.4/68.2/51.0 | 73.5/69.2/51.8 | 79.0/77.8/75.1 | 79.2/77.2/74.4 | 75.7/70.5/63.3 | 76.3/71.2/64.3 |
JPEG[ | 85.9 | 84.9 | 78.4/68.5/47.5 | 79.2/69.7/48.1 | 84.8/83.0/78.5 | 85.9/84.2/78.8 | 80.5/72.9/58.8 | 81.0/73.4/58.9 |
TVM[ | 88.8 | 86.9 | 81.5/76.7/52.7 | 80.5/75.2/51.8 | 87.0/86.2/81.8 | 87.8/86.6/81.0 | 83.1/74.0/60.3 | 82.2/73.8/59.7 |
ID+HIR(Our) | 91.2 | 92.1 | 89.7/86.8/73.8 | 90.0/86.2/75.4 | 90.8/90.9/90.6 | 91.2/90.8/90.2 | 90.4/88.7/82.6 | 90.2/88.0/83.1 |
"
防御算法 | 样本 | |||||||
---|---|---|---|---|---|---|---|---|
干净样本 | FGSM(ε=4/8/16) | CW(ε=4/8/16) | BIM(ε=4/8/16) | |||||
VGG16 | ResNet18 | VGG16 | ResNet18 | VGG16 | ResNet18 | VGG16 | ResNet18 | |
无防御 | 72.6 | 76.4 | 52.1/45.3/39.6 | 51.3/42.4/37.9 | 63.2/61.4/54.8 | 62.0/59.3/51.3 | 53.4/50.1/29.3 | 52.6/48.4/28.2 |
NRP[ | 65.2 | 65.4 | 65.4/62.1/61.2 | 69.2/68.5/68.3 | 68.1/68.7/66.3 | 71.8/70.9/70.3 | 69.3/67.7/59.3 | 72.1/70.7/66.4 |
Fast AT[ | 65.8 | 70.1 | 70.2/62.3/55.1 | 74.1/70.2/65.2 | 72.1/70.9/69.2 | 74.2/74.1/73.6 | 72.0/70.3/68.2 | 75.5/73.7/72.9 |
ComDefend[ | 68.7 | 71.4 | 66.2/61.4/60.2 | 70.2/69.8/67.2 | 70.0/69.7/65.2 | 73.8/71.2/69.1 | 68.2/66.3/60.1 | 73.2/71.7/67.5 |
FS[ | 71.3 | 74.1 | 67.2/57.1/54.2 | 54.7/44.5/40.1 | 70.2/70.1/70.5 | 70.4/67.2/65.6 | 68.3/62.5/57.3 | 71.3/69.5/64.1 |
JPEG[ | 55.4 | 55.7 | 47.2/42.3/39.1 | 49.2/41.3/39.1 | 57.2/57.1/56.80.5 | 56.1/54.1/50.4 | 57.7/55.4/50.0 | 58.2/56.2/51.2 |
JPEG[ | 58.8 | 60.5 | 49.2/43.7/38.29.1 | 51.5/44.7/42.7 | 64.2/63.4/62.7 | 65.2/62.6/62.1 | 66.0/61.6/58.2 | 65.1/62.4/59.7 |
JPEG[ | 68.2 | 71.8 | 58.9/47.2/45.2 | 55.2/47.5/45.4 | 69.3/68.9/67.2 | 68.3/67.3/63.5 | 67.3/58.2/45.5 | 63.3/59.2/47.5 |
TVM[ | 69.1 | 72.3 | 61.7/51.2/49.7 | 57.1/49.3/51.6 | 70.1/68.2/67.7 | 69.8/68.2/63.1 | 67.9/61.3/50.2 | 64.2/60.8/51.7 |
ID+HIR (Our) | 71.8 | 74.8 | 71.2/68.3/63.7 | 75.5/72.3/68.7 | 72.2/71.2/70.6 | 74.9/74.7/74.2 | 71.5/69.8/64.5 | 75.5/73.1/69.3.1 |
"
防御算法 | 样本 | |||||
---|---|---|---|---|---|---|
FGSM(?=4/8/16) | CW(?=4/8/16) | |||||
CIFAR-10 | SVHN | MNIST | CIFAR-10 | SVHN | MNIST | |
无防御 | 52.7/44.0/34.0 | 52.1/40.0/27.4 | -/-/41.2 | 17.1/14.2/9.0 | 37.1/17.2/9.5 | -/-/74.3 |
ID | 86.7/90.5/92.2 | 92.6/95.3/96.1 | -/-/98.9 | 81.8/82.1/73.2 | 95.8/93.5/94.6 | -/-/98.0 |
ID+HIR | 88.3/91.5/92.2 | 93.5/96.2/96.4 | -/-/99.1 | 85.0/85.2/90.0 | 96.2/94.8/95.7 | -/-/98.7 |
[1] | JOSHI A, MUKHERJEE A, SARKAR S, et al. Semantic Adversarial Attacks:Parametric Transformations That Fool Deep Classifiers[C]// Proceeding of the IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE, 2019:4773-4783. |
[2] | JIA R, LIANGP. Adversarial Examples for Evaluating Reading Comprehension Systems[C]// Proceeding of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP).Stroudsburg:ACL, 2017:2021-2031. |
[3] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[C]// Proceeding of the 2nd International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2014:1-10. |
[4] | MADRY A, MAKELOV A, SCHMIDTL, et al. Towards Deep Learning Models Resistant to Adversarial Attacks[C]// Proceeding of the 6th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2018:1-28. |
[5] | SHAFAHI A, HUANG W R, STUDER C, et al. Are Adversarial Examples Inevitable[C]// Proceeding of the 7th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2019:1-17. |
[6] | SHAFAHI A, NAJIBI M, GHIASI A, et al. Adversarial Training for Free![C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems (NIPS).New York:ACM, 2019:3358-3369. |
[7] | WANG Y, ZOU D, YI J, et al. Improving Adversarial Robustness Requires Revisiting Misclassified Examples[C]// Proceeding of the 7th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2019:1-14. |
[8] | ZHENG H, ZHANG Z, GU J, et al. Efficient Adversarial Training With Transferable Adversarial Examples[C]// Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2020:1181-1190. |
[9] | DING G W, SHARMA Y, LUIK Y C, et al. MMA Training:Direct Input Space Margin Maximization through Adversarial Training[C]// Proceeding of the 7th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2019:1-28. |
[10] | JIA X, WEI X, CAO X, et al. ComDefend:An Efficient Image Compression Model to Defend Adversarial Examples[C]// Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2019:6084-6092. |
[11] | LIAO F, LIANG M, DONG Y, et al. Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser[C]// Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2018:1778-1787. |
[12] | SONG Y, KIM T, NOWOZIN S, et al. PixelDefend:Leveraging Generative Models to Understand and Defend against Adversarial Examples[C]// Proceeding of the 6th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2018:1-20. |
[13] | GU S, RIGAZIO L. Towards Deep Neural Network Architectures Robust to Adversarial Examples[C]// In Proceeding of the 3th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2015:1-9. |
[14] | XU W, DAVID E, QI Y. Feature Squeezing:Detecting Adversarial Examples in Deep Neural Networks[C]// In Proceeding of the 25th Annual Network and Distributed System Security Symposium(NDSS) 2018. |
[15] | GUO C, RANA M, CISSE M, et al. Countering Adversarial Images using Input Transformations[C]// Proceeding of the 6th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2018:1-12. |
[16] | NASEER M, KHAN S, HAYATM, et al. A Self-Supervised Approach for Adversarial Robustness[C]// Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2020:262-271. |
[17] | 张树栋, 高海昌, 曹曦文, 等. 针对ASR系统的快速有目标自适应对抗攻击[J]. 西安电子科技大学学报, 2021, 48(1):168-175. |
ZHANG Shudong, GAO Haichang, CAO Xiwen, et al. Adaptive Fast and Targeted Adversarial Attack for Speech Recognition[J]. Journal of Xidian University, 2021, 48(1):168-175. | |
[18] | XIE C, WU Y, MAATEN L, et al. Feature Denoising for Improving Adversarial Robustness[C]// Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2019:501-509. |
[19] | SALMAN H, SUN M, YANG G, et al. Denoised Smoothing:A Provable Defense for Pretrained Classifiers[C]// Proceeding of 33th Neural Information Processing Systems (NIPS).New York:ACM, 2020:21945-21957. |
[20] | JEONG, J, SHIN J. Consistency Regularization for Certified Robustness of Smoothed Classifiers[C]// // Proceeding of 33th Neural Information Processing Systems (NIPS).New York:ACM, 2020:6-12. |
[21] | RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional Networks for Biomedical Image Segmentation[C]// In Proceeding of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).Heidelberg:Springer, 2015:234-241. |
[22] | ZHANG H, CISSE M, YANN N, et al. Mixup:Beyond Empirical Risk Minimization[C]// Proceeding of the 6th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2018:1-13. |
[23] | 陈开周. 最优化计算方法[M]. 西安: 西北电讯工程学院出版社, 1985: 22. |
[24] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2016:770-778. |
[25] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and Harnessing Adversarial Examples[C]// Proceeding of the 3rd International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2015:1-11. |
[26] | CARLINI N, WAGNER D. Towards Evaluating the Robustness of Neural Networks[C]// Proceeding of the 2017 IEEE Symposium on Security and Privacy (SP).Piscataway:IEEE, 2017:39-57. |
[27] | KOS J, FISCHER I, SONG D. Adversarial Examples for Generative Models[C]// Proceeding of the 2018 IEEE Security and Privacy Workshops (SPW).Piscataway:IEEE, 2018:36-42. |
[28] | LIUS, DENG W. Very Deep Convolutional Neural Network Based Image Classification Using Small Training Sample Size[C]// Proceeding of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR).Piscataway:IEEE, 2015:730-734. |
[29] | WONG E, RICE L, KOLTER J Z. Fast is Better Than Free:Revisiting Adversarial Training[C]// Proceeding of the 8th International Conference on Learning Representations (ICLR).La Jolla:ICLR, 2020:1-17. |
[1] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[2] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[3] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[4] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[5] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[6] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[7] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[8] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[9] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[10] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[11] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
[12] | ZHANG Lu,SUN Rong,LIU Jingwei. Cloned piggybacking framework for distributed storage [J]. Journal of Xidian University, 2020, 47(6): 139-147. |
[13] | HU Jianwei,ZHAO Wei,CUI Yanpeng,CUI Junjie. PHP code vulnerability mining technology based on theimproved ASTNN [J]. Journal of Xidian University, 2020, 47(6): 164-173. |
[14] | GUO Liujun,ZHANG Xueying,CHEN Guijun. Deep linear discriminant analysis for two-stage brain-controlled character spelling decoding [J]. Journal of Xidian University, 2020, 47(4): 109-116. |
[15] | DU Lizhao,XU Yan,ZHANG Wei. Phased smoke detection algorithm using dual network fusion [J]. Journal of Xidian University, 2020, 47(4): 141-148. |
|