[1] Jiang X D. Linear Subspace-based Dimensionality Reduction [J]. IEEE Signal Proc Magazine, 2011, 28(2): 16-26.
[2] Yan S C, Xu D, Zhang B Y, et al. Graph Embedding and Extensions: a General Framework for Dimensionality Reduction [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[3] Fan Z Z, Xu Y, Zhang D. Local Linear Discriminant Analysis Framework Using Sample Neighbors[J]. IEEE Trans on Neural Networks, 2011, 22(7): 1119-1132.
[4] Turk M, Pentland A P. Face Recognition Using Eigenfaces [C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Maui: IEEE Comput Sco Press, 1991: 586-591.
[5] Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: a New Approach to Appearance-based Face Representation and Recognition [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
[6] 高全学, 梁彦, 潘泉, 等. 基于描述特征的人脸识别研究 [J]. 自动化学报, 2006, 32(3): 386-392.
Gao Quanxue, Liang Yan, Pan Quan, et al. Face Recognition Based on Expressive Features [J]. ACTA Automatica Sinica, 2006, 32(3): 386-392.
[7] Jiang X D. Asymmetric Principal Component and Discriminant Analyses for Pattern Classification [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(5): 931-937.
[8] Luo D J, Ding C, Nie F P, et al. Cauchy Graph Embedding[C]//Proc of the 28th International Conference on Machine Learning. Bellevue: Association for Computing Machinery, 2011: 553-560.
[9] Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science, 2000, 290: 2319-2323.
[10] Ham J, Lee D D, Mika S, et al. A Kernel View of the Dimensionality Reduction of Manifolds [C]//Proc of Twenty-First International Conference on Machine Learning. Banff: Association for Computing Machinery, 2004: 369-376.
[11] Scholkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 15(5): 1299-1319.
[12] He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianfaces [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
[13] Xu Y, Song F X, Feng G, et al. A Novel Preserving Projection for Use with Face Recognition [J]. Expert Systems with applications, 2010, 37: 6718-6721.
[14] Gao Q X, Zhang H J, Liu J J. Two-dimensional Margin, Similarity and Variation Embedding [J]. Neurocomputing, 2012, 86: 179-183.
[15] Dai G, Yeung D Y. Tensor Embedding Methods [C]//Proc of American Association for Artificial Intelligence (AAAI). Boston: American Association for Artificial Intelligence, 2006: 330-335.
[16] Hu D W, Feng G Y, Zhou Z T. Two-dimensional Locality Preserving Projections (2DLPP) with Its Application to Palmprint Recognition [J]. Pattern Recognition, 2007, 40 (1): 339-342.
[17] Gao Q X, Xu H, Li Y Y, et al. Two-dimensional Supervised Local Similarity and Diversity Projection [J]. Pattern Recognition, 2010, 43(10): 3359-3363.
[18] 高全学, 谢德燕, 徐辉, 等. 融合局部结构和差异信息的监督特征提取方法 [J]. 自动化学报, 2010, 36(8): 1107-1114.
Gao Quanxue, Xie Deyan, Xu Hui, et al. Supervised Feature Extraction Based on Information Fusion of Local Structure and Diversity Information [J]. ACTA Automatica Sinica, 2010, 36(8): 1107-1114.
[19] Liu K, Cheng Y, Yang J Y. Algebraic Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion [J]. Pattern Recognition, 1993, 26(6): 903-911.
[20] Yang J, Zhang D, Yang J Y, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664. |