Journal of Xidian University ›› 2019, Vol. 46 ›› Issue (3): 109-115.doi: 10.19665/j.issn1001-2400.2019.03.017
Previous Articles Next Articles
YANG Jiangong,WANG Xili,LIU Shigang
Received:
2018-12-19
Online:
2019-06-20
Published:
2019-06-19
CLC Number:
YANG Jiangong,WANG Xili,LIU Shigang. Spectral-spatial classification of hyperspectral images using deep Boltzmann machines[J].Journal of Xidian University, 2019, 46(3): 109-115.
"
类别 | Indian Pines | Pavia University | |||||
---|---|---|---|---|---|---|---|
Categories | Samples | Categories | Samples | ||||
1 | Alfalfa | 46 | Asphalt | 6 631 | |||
2 | Corn-N | 1 428 | Meadows | 18 649 | |||
3 | Corn-M | 830 | Gravel | 2 099 | |||
4 | Corn | 237 | Trees | 3 064 | |||
5 | Grass-M | 483 | P-M-sheets | 1 345 | |||
6 | Grass-T | 730 | Bare Soil | 5 029 | |||
7 | Grass-P-M | 28 | Bitumen | 1 330 | |||
8 | Hay-W | 478 | S-B-Bricks | 3 682 | |||
9 | Oats | 20 | Shadows | 947 | |||
10 | Soybean-N | 972 | |||||
11 | Soybean-M | 2 455 | |||||
12 | Soybean-C | 593 | |||||
13 | Wheat | 205 | |||||
14 | Woods | 1 265 | |||||
15 | Build-G-T-D | 386 | |||||
16 | Stone-S-T | 93 | |||||
总数 | 10 249 | 总数 | 42 776 |
"
数据集 | 度量 | RBF-SVM | SAE | DBN | 深度玻尔兹曼机 |
---|---|---|---|---|---|
India Pines | OA | 71.31±0.061 3 | 92.39±0.082 4 | 95.72±0.051 4 | 96.25±0.022 3 |
AA | 70.19±0.211 2 | 92.23±0.241 1 | 95.63±0.094 3 | 96.29±0.035 2 | |
Kappa | 67.82±0.002 5 | 91.75±0.001 3 | 95.28±0.003 2 | 96.08±0.004 3 | |
Pavia University | OA | 94.82±0.062 1 | 91.68±0.051 5 | 96.12±0.062 2 | 96.81±0.024 1 |
AA | 94.17±0.043 2 | 91.31±0.074 4 | 95.88±0.036 3 | 96.55±0.048 2 | |
Kappa | 93.19±0.006 2 | 90.75±0.023 1 | 95.82±0.016 7 | 96.36±0.003 8 |
[1] |
DU B, ZHANG Y X, ZHANG L P , et al. Beyond the Sparsity-based Target Detector: a Hybrid Sparsity and Statistics-based Detector for Hyperspectral Images[J]. IEEE Transactions on Image Processing, 2016,25(11):5345-5357.
doi: 10.1109/TIP.2016.2601268 |
[2] |
BEDINI E, RASMUSSEN T M . Use of Airborne Hyperspectral and Gamma-ray Spectroscopy Data for Mineral Exploration at the Sarfartoq Carbonatite Complex, Southern West Greenland[J]. Geosciences Journal, 2018,22(4):641-651.
doi: 10.1007/s12303-017-0078-5 |
[3] |
DU B, ZHANG L P . A Discriminative Metric Learning Based Anomaly Detection Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(11):6844-6857.
doi: 10.1109/TGRS.2014.2303895 |
[4] |
DU B, ZHANG L P . Random-selection-based Anomaly Detector for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(5):1578-1589.
doi: 10.1109/TGRS.2010.2081677 |
[5] | 张姝茵, 侯彪 . 高概率选择和自适应MRF的极化SAR分类[J]. 西安电子科技大学学报, 2017,44(6):59-64. |
ZHANG Shuyin, HOU Biao . POLSAR Image Classification via High-probability Selection and Adaptive MRF[J]. Journal of Xidian University, 2017,44(6):59-64. | |
[6] | GHAMISI P, PLAZA J, CHEN Y , et al. Advanced Spectral Classifiers for Hyperspectral Images: A Review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017,5(1):8-32. |
[7] |
SCHMIDHUBER J . Deep Learning in Neural Networks: an Overview[J]. Neural Networks, 2015,61(1):85-117.
doi: 10.1016/j.neunet.2014.09.003 |
[8] |
HINTON G E . Training Products of Experts by Minimizing Contrastive Divergence[J]. Neural Computation, 2002,14(8):1771-1800.
doi: 10.1162/089976602760128018 |
[9] |
PAN B, SHI Z W, XU X . MugNet: Deep Learning for Hyperspectral Image Classification Using Limited Samples[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,145(11):108-119.
doi: 10.1016/j.isprsjprs.2017.11.003 |
[10] | 陈希闯 . 基于深度学习的高光谱图像分类[D]. 西安: 西安电子科技大学, 2017. |
[11] |
CHEN Y S, LIN Z H, ZHAO X , et al. Deep Learning-based Classification of Hyperspectral Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2094-2107.
doi: 10.1109/JSTARS.2014.2329330 |
[12] |
CHEN Y S, ZHAO X, JIA X P . Spectral-spatial Classification of Hyperspectral Data Based on Deep Belief Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(6):2381-2392.
doi: 10.1109/JSTARS.2015.2388577 |
[13] | DING J, CHEN B, LIU H W , et al. Convolutional Neural Network with Data Augmentation for SAR Target Recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(3):364-368. |
[14] | SALAKHUTDINOV R, HINTON G. Deep Boltzmann Machines [C]//Proceedings of the 2009 12th International Conference on Artificial Intelligence and Statistics. New York: ACM, 2009: 448-455. |
[15] |
HINTON G E, OSINDERO S, TEH Y W . A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006,18(7):1527-1554.
doi: 10.1162/neco.2006.18.7.1527 |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[11] | WEI Ziyu,YANG Xi,WANG Nannan,YANG Dong,GAO Xinbo. Reciprocal bi-directional generative adversarial network for cross-modal pedestrian re-identification [J]. Journal of Xidian University, 2021, 48(2): 205-212. |
[12] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[13] | HAN Zhuoxi,WANG Feng,CHEN Pei,LI Zhuolun. Fuzzy data association algorithm assisted by historical features [J]. Journal of Xidian University, 2021, 48(2): 92-98. |
[14] | LIU Jieyi,GONG Maoguo,ZHAN Tao,LI Hao,ZHANG Mingyang. Method for discrimination of false targets in multistation radar systems based on the deep neural network [J]. Journal of Xidian University, 2021, 48(2): 133-138. |
[15] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
|