[1] Zhang Liangjie, Zhang Jia, Cai Hong. Services Computing [M]. Beijing: Tsinghua University Press, 2007: 1-18.
[2] Zheng Zibin, Lyu M R. A Distributed Replication Strategy Evaluation and Selection Framework for Fault Tolerant Web Services [C]//IEEE International Conference on Web Services. Beijing: IEEE, 2008: 145-152.
[3] Shao Lingshuang, Zhang Jing, Wei Yong, et al. Personalized QoS Prediction for Web Services Via Collaborative Filtering [C]//IEEE International Conference on Web Services. Salt Lake City: IEEE, 2007: 439-446.
[4] Sreenathr M, Singhm P. Agent-based Service Selection [J]. Journal of Web Semantics, 2003, 1(3): 261-279.
[5] Rong Wenge, Liu Kecheng, Liang Lin. Personalized Web Service Ranking Via User Group Combining Association Rule [C]//IEEE International Conference on Web Services. Los Angeles: IEEE, 2009: 445-452.
[6] Zheng Zibin, Ma Hao, Lyu M R, et al. WSRec: a Collaborative Filtering Based Web Service Recommendation System [C]//IEEE International Conference on Web Services. Los Angeles: IEEE, 2009: 437-444.
[7] Zheng Zibin, Ma Hao, Lyu M R, et al. Collaborative Web Service QoS Prediction Via Neighborhood Integrated Matrix Factorization [DB/OL]. [20120130]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6122009.
[8] Zhang Yilei, Zheng Zibin, Lyu M R. WSPred: A Time-Aware Personalized QoS Prediction Framework for Web Services [C]//IEEE 22nd International Symposium on Software Reliability Engineering. Hiroshima: IEEE, 2011: 210-219.
[9] Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Collaborative Filtering Recommender Systems [J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53.
[10] Koren Y, Bell R. Recommender Systems Handbook [M]. New York: Springer, 2011: 145-186.
[11] Takacs G, Pilaszy I,Nemeth B, et al. On the Gravity Recommendation System [C]//Proc of KDD Cup Workshop at SIGKDD 2007, 13th ACM Int Conf on Knowledge Discovery and Data Mining. San Jose: ACM, 2007: 22-30.
[12] Koren Y. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model [C]//Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434. |