[1] Eldar Y C, Kutyniok G. Compressed Sensing: Theory and Applications [M]. Cambridge: Cambridge University Press, 2012.
[2] Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[3] Donoho D. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[4] Shi Guangming, Lin Jie, Chen Xuyang, et al. UWB Echo Signal Detection with Ultra-Low Rate Sampling Based on Compressed Sensing [J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2008, 55(4): 379-383.
[5] Namias V. The Fractional Fourier Transform and Its Application in Quantum Mechanics [J]. Journal of the Institute of Mathematics and Its Applications, 1980, 25(3): 241-265.
[6] 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用 [M]. 北京: 清华大学出版社, 2009.
[7] Kirolos S, Laska J, Wakin M, et al. Analog-to-Information Conversion via Random Demodulation [C]//Proceedings of the IEEE Dallas Circuits and System Workshop on Design, Applications, Integration and Software. Piscataway: IEEE, 2006: 1183-1186.
[8] Tropp J A, Laska J, Duarte M, et al. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals [J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
[9] Mishali M, Eldar Y C. Sub-Nyquist Sampling: Bridging Theory and Practice [J]. IEEE Signal Processing Magazine , 2011, 28(6): 98-124.
[10] Baransky E, Itzhak G, Shmuel I, et al. A Sub-Nyquist Radar Prototype: Hardware and Algorithms [DB/OL]. [2013-06-05]. arXiv.org/abs/1208.2515.
[11] Needell D, Vershynin R. Signal Recovery from Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit [J]. IEEE Journal on Selected Topics in Signal Processing, 2010, 4(2): 310-316.
[12] 甘伟, 许录平, 张华, 等. 一种贪婪自适应压缩感知重构 [J]. 西安电子科技大学学报, 2012, 39(3): 50-57.
Gan Wei, Xu Luping, Zhang Hua, et al. Greedy Adaptive Recovery Algorithm for Compressed Sensing [J]. Journal of Xidian University, 2012, 39(3): 50-57.
[13] 陶然, 邓兵, 王越. 分数阶Fourier变换在信号处理领域的研究进展 [J]. 中国科学E辑信息科学, 2006, 36(2): 113-136.
Tao Ran, Deng Bing, Wang Yue. Fractional Fourier Transform and Its Evolution in Signal Processing [J]. Science in China Serize E Information Sciences, 2006, 36(2): 113-136.
[14] Pei S C, Ding J J. Closed-form Discrete Fractional and Affine Fourier Transform [J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1338-1353. |