[1] |
CAI Z, SABERIAN M, VASCONCELOS N. Learning Complexity-aware Cascades for Deep Pedestrian Detection[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3361-3369.
|
[2] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]// Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2014: 580-587.
|
[3] |
GIRSHICK R.( 2015) Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
|
[4] |
REN S, HE K, GIRSHICK R , et al. Faster R-CNN: towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[5] |
ZHANG L L, LIN L, LIANG X D, et al. Is Faster R-CNN Doing Well for Pedestrian Detection?[C]// Lecture Notes in Computer Science: 9906. Cham: Springer, 2016: 443-457.
|
[6] |
YANG D, ZHANG J, XU S , et al. Real-time Pedestrian Detection via Hierarchical Convolutional Feature[J]. Multimedia Tools and Applications, 2018,77(19):25841-25860.
|
[7] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]// Lecture Notes in Computer Science: 9905. Heidelberg: Springer Verlag, 2016: 21-37.
|
[8] |
王霞, 张为 . 基于联合学习的多视角室内人员检测网络[J]. 光学学报, 2019,39(2):78-88.
|
|
WANG Xia, ZHANG Wei . Multi-view Indoor Human Detection Neural Network Based on Joint Learning[J]. Acta Optica Sinica, 2019,39(2):78-88.
|
[9] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
[10] |
HU J, SHEN L, SUN G . Squeeze-and-excitation Networks[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7132-7141.
|
[11] |
LIN T Y, DOLLÁR P, GIRSHICK R, . et al. Feature Pyramid Networks for Object Detection [C]//Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
|
[12] |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A , et al. Improving Neural Networks by Preventing Co-adaptation of Feature Detectors[J]. Computer Science, 2012,3(4):212-223.
|
[13] |
REDMON J, FARHADI A . YOLO9000: Better, Faster, Stronger[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
|
[14] |
ARTHUR D, VASSILVITSKII S . K-means++: the Advantages of Careful Seeding[C]// Proceedings of the 2007 Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2007: 1027-1035.
|
[15] |
OUYANG W, WANG X . Joint Deep Learning for Pedestrian Detection[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2056-2063.
|