[1] |
MURRAY K E, WHITTY S, LIU S , et al. Timing-driven Titan: Enabling Large Benchmarks and Exploring the Gap between Academic and Commercial CAD[J]. ACM Transactions on Reconfigurable Technology and Systems, 2015,8(2):1-18.
|
[2] |
PHAM K D, VESPER M, KOCH D , et al. EFCAD-an Embedded FPGA CAD Tool Flow for Enabling On-chip Self-compilation[C]//Proceedings of the 2019 27th IEEE International Symposium on Field-Programmable Custom Computing Machines. Washington: IEEE Computer Society, 2019: 5-8.
|
[3] |
LUU J, GOEDERS J, WAINBERG M , et al. VTR 7.0: Next Generation Architecture and CAD System for FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2014,7(2):1-30.
|
[4] |
ZHANG J Q, LV H J, TAN L B , et al. A Parallel Algorithm Based on OpenMP+ STM for FPGA Timing-driven Placement [C]//Proceedings of the 2016 International Conference on Computer Science and Technology. Beijing: World Scientific Publishing Company, 2017: 1185-1193.
|
[5] |
VEREDAS F J, CARMONA E J . FPGA Placement Improvement Using a Genetic Algorithm and the Routing Algorithm as a Cost Function[C]//Proceedings of the 2018 21st Euromicro Conference on Digital System Design. Piscataway: IEEE, 2018: 70-76.
|
[6] |
PATTISON R, ABUOWAIMER Z, AREIBI S , et al. GPlace: a Congestion-aware Placement Tool for Ultrascale FPGAs[C]//Proceedings of the 2016 IEEE/ACM International Conference on Computer-Aided Design. Piscataway: IEEE, 2016: 2980085.
|
[7] |
ABUOWAIMER Z, MAAROUF D, MARTIN T , et al. GPlace3. 0: Routability-driven Analytic Placer for Ultrascale FPGA Architectures[J]. ACM Transactions on Design Automation of Electronic Systems, 2018,23(5):66.
|
[8] |
HU C Y, DUAN Q H, HU L R , et al. An Analytical-based Hybrid Algorithm for FPGA Placement[C]//Proceedings of the 2019 Great Lakes Symposium on VLSI. New York: ACM, 2019: 351-354.
|
[9] |
ZHOU Y, VERCRUYCE D, STROOBANDT D . MODA-PSO: towards Fast Hard Block Legalization for Analytical FPGA Placement[C]//Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: ACM, 2019: 184.
|
[10] |
张国栋, 刘强, 张齐军 . 用于FPGA IP保护的低成本高性能PUF设计[J]. 西安电子科技大学学报, 2016,43(6):97-102.
|
|
ZHANG Guodong, LIU Qiang, ZHANG Qijun . Low Cost and High Performance RO-PUF Design for IP Protection of FPGA Implementations[J]. Journal of Xidian University, 2016,43(6):97-102.
|
[11] |
MA Y, CAO Y, VRUDHULA S , et al. Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018,26(7):1354-1367.
doi: 10.1109/TVLSI.2018.2815603
|
[12] |
郭强, 刘波, 司圣平 , 等. SRAM-FPGA抗单粒子翻转方法和预估[J]. 西安电子科技大学学报, 2018,45(1):112-116.
|
|
GUO Qiang, LIU Bo, SI Shengping , et al. SRAM-FPGA SEU Mitigation Method and Prediction[J]. Journal of Xidian University, 2018,45(1):112-116.
|
[13] |
KUON I, TESSIER R, ROSE J . FPGA Architecture: Survey and Challenges[J]. Foundations and Trends in Electronic Design Automation, 2007,2(2):135-253.
doi: 10.1561/1000000005
|