[1] |
ARIKAN E. Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[J]. IEEE Transactions on Information Theory, 2009, 55(7):3051-3073.
doi: 10.1109/TIT.2009.2021379
|
[2] |
牛凯, 许文俊, 张平. 面向6G的极化编码非正交多址接入[J]. 西安电子科技大学学报, 2020, 47(6):5-12.
|
|
NIU Kai, XU Wenjun, ZHANG Ping. Polar Codednon-Orthogonal Multiple Access to 6G Wireless Systems[J]. Journal of Xidian University, 2020, 47(6):5-12.
|
[3] |
ARIKAN E, TELATAR E. On the Rate of Channel Polarization[C]// Proceedings of the 2009 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2009:1493-1495.
|
[4] |
LEE M, YANG K. The Exponent of a Polarizing Matrix Constructed From the Kronecker Product[J]. Designs,Codes Cryptography, 2014, 70(3):313-322.
doi: 10.1007/s10623-012-9689-z
|
[5] |
GABRY F, BIOGLIO V, LAND I, et al. Multi-kernel Construction of Polar Codes[C]// Proceedings of the 2017 IEEE International Conference on Communications Workshops. Piscataway: IEEE, 2017:761-765.
|
[6] |
LIN H, LIN S, ABDEL-GHAFFAR K A S. Linear and Nonlinear Binary Kernels of Polar Codes of Small Dimensions with Maximum Exponents[J]. IEEE Transactions on Information Theory, 2015, 61(10):5253-5270.
doi: 10.1109/TIT.2015.2469298
|
[7] |
TROFIMIUK G, TRIFONOV P. Window Processing of Binary Polarization Kernels[J]. IEEE Transactions on Communications, 2021, 69(7):4294-4305.
doi: 10.1109/TCOMM.2021.3072730
|
[8] |
MOSKOVSKAYA E, TRIFONOV P. Design of BCH Polarization Kernels with Reduced Processing Complexity[J]. IEEE Communications Letters, 2020, 24(7):1383-1386.
doi: 10.1109/LCOMM.2020.2984382
|
[9] |
MOROZOV R A. Convolutional Polar Kernels[J]. IEEE Transactions on Communications, 2020, 68(12):7352-7361.
doi: 10.1109/TCOMM.2020.3026103
|
[10] |
TROFIMIUK G. A Search Method For Large Polarization Kernels[C]// Proceedings of the 2021 IEEE International Symposiumon Information Theory. Piscataway: IEEE, 2021:2084-2089.
|
[11] |
TRIFONOV P. Recursive Trellis Processing of Large Polarization Kernels[C]// Proceedings of the 2021 IEEE International Symposiumon Information Theory. Piscataway: IEEE, 2021:2090-2095.
|
[12] |
MUEADKHUNTHOD K, MIN MYINT L M, SUPNITHI P, et al. Construction of Punctured Polar Codes Based on Genetic Algorithm[C]// Proceedings of the 2021 International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology. Piscataway: IEEE, 2021:378-381.
|
[13] |
WANG R, LIU R. Anovel Puncturing Scheme For Polar Codes[J]. IEEE Communications Letters, 2014, 18(12):2081-2084.
doi: 10.1109/LCOMM.2014.2364845
|
[14] |
HUANG Y, ZHANG M, DOU Y, et al. A Novel Puncturing Pattern Selection with Feedback Values for Polar Code[J]. Physical Communication, 2021, 46:101346.
doi: 10.1016/j.phycom.2021.101346
|
[15] |
KORADA S B, SASOGLU E, URBANKE R L. Polar Codes:Characterization of Exponent, Bounds,and Constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12):6253-6264.
doi: 10.1109/TIT.2010.2080990
|
[16] |
ANDERSON S E, MATTHEWS G L. Exponents of Polar Codes Using Algebraic Geometric Code Kernels[J]. Designs,Codes Cryptography, 2014, 73(2):699-717.
doi: 10.1007/s10623-014-9987-8
|
[17] |
MORI R, TANAKA T. Performance of Polar Codes with the Construction Using Density Evolution[J]. IEEE Communications Letters, 2009, 13(7):519-521.
doi: 10.1109/LCOMM.2009.090428
|
[18] |
TAL I, VARDY A. How to Construct Polar Codes[J]. IEEE Transactions on Information Theory, 2013, 59(10):6562-6582.
doi: 10.1109/TIT.2013.2272694
|
[19] |
YUAN B, PARHI K K. Early Stopping Criteria for Energy-Efficient Low-Latency Belief-Propagation Polar Code Decoders[J]. IEEE Transactions on Signal Processing, 2014, 62(24):6496-6506.
doi: 10.1109/TSP.2014.2366712
|